首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 55 毫秒
1.
Oxygen adsorption and desorption were characterized on the kinked Pt(321) surface using high resolution electron energy loss spectroscopy, thermal desorption spectroscopy and Auger electron spectroscopy. Some dissociation of molecular oxygen occurs even at 100 K on the (321) surface indicating that the activation barrier for dissociation is smaller on the Pt(321) surface than on the Pt(111) surface. Molecular oxygen can be adsorbed at 100 K but only in the presence of some adsorbed atomic oxygen. The dominance of the v(OO) molecular oxygen stretching mode in the 810 to 880 cm?1 range indicates that the molecular oxygen adsorbs as a peroxo-like species with the OO axis parallel or nearly parallel to the surface, as observed previously on the Pt(111) surface [Gland et al., Surface Sci. 95 (1980) 587]. The existence of at least two types of peroxo-like molecular oxygen is suggested by both the unusual breadth of the v(OO) stretching mode and breadth of the molecular oxygen desorption peak. Atomic oxygen is adsorbed more strongly on the rough step sites than on the smooth (111) terraces, as indicated by the increased thermal stability of atomic oxygen adsorbed along the rough step sites. The two forms of adsorbed atomic oxygen can be easily distinguished by vibrational spectroscopy since oxygen adsorbed along the rough step sites causes a v(PtO) stretching mode at 560 cm?1, while the v(PtO) stretching mode for atomic oxygen adsorbed on the (111) terraces appears at 490 cm?1, a value typical of the (111) surface. Two desorption peaks are observed during atomic oxygen recombination and desorption from the Pt(321) surface. These desorption peaks do not correlate with the presence of the two types of adsorbed atomic oxygen. Rather, the first order low temperature peak is a result of the fact that about three times more atomic oxygen can be adsorbed on the Pt(321) surface than on the Pt(111) surface (where only a second order peak is observed). The heat of desorption for atomic oxygen decreases from about 290kJ/mol (70 kcal/mol) to about 196 kJ/mol (47 kcal/mol) with increasing coverage. Preliminary results concerning adsorption of molecular oxygen from the gas phase in an excited state are also briefly discussed.  相似文献   

2.
《Surface science》1996,365(2):310-318
Adsorption states of oxygen on Cu(111) at 100–300 K were investigated by means of HREELS. Two molecular species were characterized by different OO stretching frequencies (v(OO)) at 610 cm−1 and 820–870 cm−1, which are assigned to the peroxo-like species (O2−2) adsorbed in a bridged form and the one in a bidentate form bound on an atop site, respectively. The bridged peroxo species is preferred at the low coverage and the atop peroxo species becomes dominant at the higher coverage. In addition to the peaks due to the molecular oxygen, a peak assigned to v(CuO) of atomic oxygen was observed at 370 cm−1 at the high coverage. The frequency of this mode was higher than the frequency reported for Cu(111) exposed to oxygen above 300 K, indicating that the adsorption state of atomic oxygen formed at 100 K is different from that above 300 K. The v(OO) modes became faint after annealing to 170 K because of O2 dissociation. The v(CuO) mode of the atomic oxygen formed at 100 K remained up to 230 K and disappeared after annealing to 300 K. No desorption of O2 was detected on annealing to 300 K. It was also found that vibrational spectra for adsorbed NH3 are influenced by the adsorption states of atomic oxygen on Cu(111).  相似文献   

3.
For CO adsorption on Fe(100) different adsorption species are detected with high resolution EELS (electron energy loss spectroscopy) which sequentially fill in with increasing coverage. Up to ~ 350 K and low CO exposure (≦1 L), a predominant molecular species with an unusually low stretching frequency, 1180–1245 cm?1, is detected. This unusual CO bond weakening is consistent with a “lying down” binding configuration of CO. For higher CO coverages at 110 K, further CO adsorption states with vibrational frequencies of 1900–2055 cm?1 are populated which are due to CO bound with the molecular axis perpendicular to the surface.  相似文献   

4.
Reflection absorption infrared spectroscopy has been used in conjunction with LEED and surface potential measurements to study low temperature CO adsorption on the oxidised Cu surfaces Cu(111)O|32?2|, Cu(110)O(2 × 1) and Cu(110)Oc(6 × 2). On all three surfaces adsorption at 80 K yields surface potential changes in excess of 0.6 V and does not lead to the formation of an ordered overlayer. At high coverages the adsorption enthalpy is lower than on the clean surfaces. Infrared spectra show the growth of a doublet band with components initially at 2100 and 2117 cm?1 on the oxidised Cu(111) surface. Similar features seen on the oxidised Cu(110) surfaces are accompanied by a band at 2140 cm?1: a very weak band at the same frequency on oxidised Cu(111) is attributed to defect sites. Studies of the temperature dependence of the spectrum from oxidised Cu(111) lead to the conclusion that two different binding sites are occupied. Spectra of 12CO13CO mixtures show that the molecules occupying these sites are in close proximity to each other, and that the spectrum is subject to large but opposing coverage-dependent frequency shifts.  相似文献   

5.
Thermal desorption and photoemission spectroscopy (PES) have been used to investigate the chemisorption of CO on an annealed Pt0.98Cu0.02(110) surface. The clean surface shows 9.1 ± 2.6% Cu within the top 4 Å, and is (1 × 3) reconstructed. Thermal desorption of CO has revealed the existence of various adsorption states with these respective heats of adsorption: (α) 35.2 to 37.8 kcal/mol and (β) 24.5 to 26.3 kcal/mol on Pt sites, (γ) 16.0 to 17.2 kcal/mol on PtCu “mixed” sited, and (δ) 12.9 to 13.9 kcal/mol on Cu sites. PES observation of Cu 3d-derived states (using hv = 150 eV) and the Cu 2p32 core levels (using Mg Kα radiation) shows that the electronic structure of the Cu constituent is changed only when CO adsorbs on the Pt-Cu “mixed” sites or the Cu sites. Furthermore, the CO states associated with Pt sites reflect the structural difference between the (1 × 3) alloy surface and the (1 × 2) pure Pt(110) surface: α-CO on the alloy surface desorbs at a temperature 17 to 21 K. higher than the maximum desorption temperature of CO from pure Pt(110), and the ratio of β-CO to α-CO desorption from the alloy surface is larger than the ratio of low temperature to high temperature peaks in the desorption of CO from pure Pt(110).  相似文献   

6.
Reflection-absorption infrared spectroscopy has been combined with thermal desorption and surface coverage measurements to study nitrogen adsorption on a {111}-oriented platinum ribbon under ultrahigh vacuum conditions. Desorption spectra show a single peak (at 180 K) after adsorption at 120 K, giving a coverage-independent activation energy for desorption'of ~40 kJmol?1. The initial sticking probability at this temperature is 0.15, and the maximum uptake was ~1.1 × 1014 molecule cm?2. The adsorbed nitrogen was readily displaced by CO, h2 and O2. An infrared absorption band was observed with a peak located at 2238 ± 1 cm?1, and a halfwidth of 9 cm?1, with a molecular intensity comparable to that reported for CO on Pt{111}. The results are compared with data for chemisorption on other group VIII metals. An earlier assignment of infrared active nitrogen to B5 sites on these metals is brought into question by the present results.  相似文献   

7.
The growth and chemisorptive properties of monolayer films of Ag and Au deposited on both the Pt(111) and the stepped Pt(553) surfaces were studied using Auger electron spectroscopy (AES), thermal desorption spectroscopy (TDS), and low energy electron diffraction (LEED). AES studies indicate that the growth of Au on Pt(111) and Pt(553) and Ag on Pt(111) proceeds via a Stranski-Krastanov mechanism, whereas the growth of Ag on the Pt(553) surface follows a Volmer-Weber mechanism. Au dissolves into the Pt crystal bulk at temperatures > 800 K, whereas Ag desorbs at temperatures > 900 K. TDS studies of Ag-covered Pt surfaces indicate that the AgPt bond (283 kJ mol?1) is ~25 kJ mol?1 stronger than the AgAg bond (254 kJ mol?1). On the Pt(553) surface the Au atoms are uniformly distributed between terrace and step sites, but Ag preferentially segregates to the terraces. The decrease in CO adsorption on the Pt crystal surfaces is in direct proportion to the Ag or Au coverage. No CO adsorption could be detected for Ag or Au coverages above one monolayer at 300 K and 10?8 Torr. The heat of adsorption of CO on Pt is unaltered by the presence of Ag or Au.  相似文献   

8.
Oxygen adsorbed on Pt(111) has been studied by means of temperature programmed thermal desorption spectroscopy (TPDS). high resolution electron energy loss spectroscopy (EELS) and LEED. At about 100 K oxygen is found to be adsorbed in a molecular form with the axis of the molecule parallel to the surface as a peroxo-like species, that is, the OO bond order is about 1. At saturation coverage (θmol= 0.44) a (32×32)R15° diffraction pattern is observed. The sticking probability S at 100 K as a function of coverage passes through a maximum at θ = 0.11 with S = 0.68. The shape of the coverage dependence is characteristic for adsorption in islands. Two coexisting types of adsorbed oxygen molecules with different OO stretching vibrations are distinguished. At higher coverages units with v-OO = 875 cm?1 are dominant. With decreasing oxygen coverages the concentration of a type with v-OO = 700 cm?1 is increased. The dissociation energy of the OO bond in the speices with v-OO = 875 cm?1 is estimated from the frequency shift of the first overtone to be ~ 0.5 eV. When the sample is annealed oxygen partially desorbs at ~ 160K, partially dissociates and orders into a p(2×2) overlayer. Below saturation coverage of molecular oxygen, dissociation takes place already at92 K. Atomically adsorbed oxygen occupies threefold hollow sites, with a fundamental stretching frequency of 480 cm?1. In the non-fundamental spectrum of atomic oxygen the overtone of the E-type vibration is observed, which is “dipole forbidden” as a fundamental in EELS.  相似文献   

9.
The adsorption and coadsorption of CO and H2 have been studied by means of thermal desorption (TD) and electron stimulated desorption (ESD) at temperatures ranging from 250 to 400 K. Three CO TD states, labelled as β2, β1, and β0 were detected after adsorption at 250 K. The population of β2 and β1 states which are the only ones observed upon adsorption at temperatures higher than 300 K was found to depend on adsorption temperature. The correlation between the binding states in the TD spectra and the ESD O+ and CO+ ions observed was discussed. Hydrogen is dissociatively adsorbed on Pd(111) and no ESD H+ signal was recorded following H2 adsorption on a clean Pd surface. The presence of CO was found to cause an appearance of a H+ ESD signal, a decrease of hydrogen surface population and an arisement of a broad H2 TD peak at about 450 K. An apparent influence of hydrogen on CO adsorption was detected at high hydrogen precoverages alone, leading to a decrease in the CO sticking coefficient and the relative population of CO β2 state. The coadsorption results were interpreted assuming mutual interaction between CO and H at low and medium CO coverages, the “cooperative” species being responsible for the H+ ESD signal. Besides, the presence of CO was proved to favour hydrogen penetration into the bulk even at high CO coverage when H atoms were completely displaced from the surface.  相似文献   

10.
CO adsorption on Pt(111) and vicinal Pt(111) surfaces has been studied by means of work function variation and He scattering measurements. AES and LEED were used mainly for correlations with other work. Special attention has been paid to the low coverage regime (θco < 0.1) with emphasis on surface structural dependencies. The minimum of the work function versus CO exposure curve occurs at a coverage less than 11% on “kink-free” surfaces. This is much lower than the hitherto commonly accepted value of 33%, and does not relate to any observed LEED superstructure. The value of Δφmin depends strongly on the surface structure. For an “ideal” Pt(111) surface with a step density less than 10?3 at a temperature of 300 K, Δφmin = ?240 meV. The scattering cross section Σ of CO adsorbed on Pt(111) for 63 meV He is typically > 250 Å2, i.e. much larger than expected from the Van der Waals radii of He and CO. For two nominal Pt(111) surfaces with step densities of 10?2 and less than 10?3, respectively, the measured Σ values varied by a factor of three. This can be explained by preferential CO occupation of defect sites, which are already not “seen” by thermal helium. By comparing results on a stepped (997) and a kinked (12 11 9) Pt surface with similar defect densities, the kinks are proven to play a decisive role. They probably form saddles in the recently proposed activation barrier for migration between terrace and step sites.  相似文献   

11.
《Surface science》1996,364(1):L540-L546
The first observations of Li-modified isothermal kinetic oscillations during CO oxidation on a Pt field emitter tip are reported. The oscillations are realized on the surface of a [111]-oriented Pt tip in the presence of a Li submonolayer coverage of about 2.5 × 1014cm−2 and are compared to the corresponding Li-free oscillations occurring on the same tip. In both cases the oscillatory process is visualized using the field electron emission (FEM) mode of the lithium field desorption microscope (Li-FDM). The origin of the FEM imaging contrast of coadsorbed LiCO and LiO layers on Pt is clarified. The influence of the coadsorbed Li submonolayer on the oscillating behavior of CO oxidation on Pt is discussed.  相似文献   

12.
《Surface science》1994,303(3):L385-L391
The oxygen-exchange reaction between N16O and 18O2 coadsorbed on Pt(111) has been studied by temperature-programmed desorption (TPD). Reaction products of N18O and 18O16O are desorbed from Pt(111) initially saturated with 18O2 at 94 K followed by exposure of N16O. Three distinct desorption peaks are observed in N18O TPD spectra at 145, 310, and 340 K, and two peaks in 18O16O at 155 K and between 600 and 1000 K. In contrast, the exchange reaction is greatly suppressed when oxygen molecules are replaced with oxygen adatoms at three-fold hollow sites of Pt(111). These results strongly suggest that adsorbed oxygen molecules are responsible for the exchange reaction. NO2 or NO3 is postulated as a reaction intermediate. However, since desorption signals corresponding to these species are not detected, the oxygen-exchanged products are not due to the cracking processes of the higher order nitrogen oxides in the mass spectrometer. Thus, the reaction proceeds via the intermediate that is dissociated during the elevation of surface temperature.  相似文献   

13.
Chemisorption of CO on the Ni(100)p(2 × 2)O and c(2 × 2)O surfaces has been investigated by high-resolution electron energy loss spectroscopy (EELS) and low-energy electron diffraction (LEED). At 175 K CO adsorption on Ni(100)p(2 × 2)O saturates at about 1 L exposure in a structure interpreted to be Ni(100)p(2 × 2)O—p(2 × 2)CO. The CO layer is stable at 175 K but desorbs readily around 300 K. The EEL spectrum for p(2 × 2)CO shows vibrational losses at 46 meV and 245 meV interpreted to be due to excitations of the Ni-C and C-O stretching vibrations of CO molecules bridge bonded to two nearest neighbour Ni atoms. This interpretation is also supported by the LEED observations. For the preceeding dilute CO layer the vibrational loss spectrum reveals CO adsorption both to Ni bridge sites and hollow sites. At 175 K CO does only adsorb stationary on p(2 × 2)O defects in the Ni(100)c(2 × 2)O surface and not at all on epitaxially grown NiO(111) and (100) surfaces.  相似文献   

14.
The adsorption, desorption, surface structural chemistry, and electron impact properties of CO on Rh(110) have been studied by LEED, Auger spectroscopy, thermal desorption, and surface potential measurements. At 300 K, CO adsorbs into a single chemisorbed state whose desorption energy (Ed) is ~130kJmol-1. The initial sticking probability is unity, and at saturation coverage a (2 × 1)plgl ordered phase reaches its maximum degree of perfection, thus demonstrating that this CO structure is common to the (110) faces of all the cubic platinum group metals. The saturated adlayer corresponds to θ = 1 and shows a surface potential of Δ? = +0.97 V. Under electron impact, desorption and dissociation of CO occur with about equal probability, the relevant cross sections being ~10-22 m2 in each case. Slow thermal dissociation of CO occurs at high temperature and pressure, leaving a deposit of C and O atoms on the surface. The thermal, electron impact, and Δ? properties of Rh(110)CO resemble those of Ni(110)CO rather closely, and are very different from those of Pt(110)CO. Surface carbon is shown to inhibit CO chemisorption, whereas surface oxygen appears to lead to the formation of a new more tightly bound form of CO with a considerably enhanced desorption energy (Ed ~ 183 kJmol-1). Similar oxygen-induced high temperature CO states have been reported recently on Co(0001) and Ru(101&#x0304;1).  相似文献   

15.
Carbon monoxide adsorption has been studied on a series of presulfided Ni(100) surfaces using vibrational spectroscopy. The sulfided Ni(100) surfaces were characterized using Auger electron spectroscopy and low energy electron diffraction, binding states were isolated by heating CO-dosed surfaces to prescribed temperatures, corresponding to the desorption temperatures of the CO. Adsorption of CO on Ni(100) with a p(2 × 2) array of sulfur lead to CO stretching frequencies of 1740 and 1930 cm?1 corresponding to desorption temperatures of 370 and 290 K, respectively. Adsorption of CO into the c(2 × 2)S structure resulted in a CO stretching frequency of 2115 cm?1 and a desorption peak near 140 K. The binding sites on the p(2 × 2)S structure were interpreted as metal four-fold hollows and bridging sites. The high frequency state was interpreted as weak bonding into the four-fold hollow with back donation into the π1 orbital on CO restricted by stearic hindrance due to adsorbed sulfur. Both the thermal desorption and vibrational results indicated that local CO-sulfur interactions are dominant on the presulfided Ni(100) surface in the coverage range studied.  相似文献   

16.
H. Niehus 《Surface science》1979,87(2):561-580
Oxygen and carbon monoxide adsorption on clean W(111) surfaces have been studied by angular resolved ESD emission (ESDIAD). In addition, the specimen could be characterized in situ with AES and LEED. Adsorption was performed at room temperature. The electron stimulated desorption yielded O+ ions from the two investigated adsorption layers. Upon oxygen adsorption followed by subsequent annealing at least eight different ESDIAD patterns have been obtained. However, a convincing interpretation on the basis of the surface geometry can only be presented for three patterns produced without annealing as well as for one pattern at a very high annealing temperature. The difficulties are a consequence of complex structure changes which the surface undergoes in the intermediate annealing temperature range. This may influence the little known neutralisation probability of the desorbing ions. In this special case ESDIAD probably reflects in contrast to LEED a picture of some specific adsorption sites (minority species) and therefore, no clear correlation of the two techniques can be seen. ESDIAD from carbon monoxide shows four different patterns and supports the model of linear bonded CO molecules at room temperature with oxygen in the “standing up” position. At T > 900 K, CO starts to dissociate and results in similar ESDIAD patterns as obtained from O2 adsorption.  相似文献   

17.
The adsorption-desorption properties of the gold(111)-chlorine system have been investigated. Thermal desorption experiments following chlorine adsorption at 298 K indicated two desorption processes: the high temperature peak (ΔH = 217 kJmol?1) showed desorption of equal numbers of molecukr and atomic chlorine species, while the lower temperature peak (ΔH = 140 kJmol?1) was due to the desorption of Cl2 only. Chlorine adsorption led to a maximum work function change of +0.5 V and electron-stimulated desorption proceeded with constant cross-section (1.4 × 1018 cm2), until all chlorine had been removed from the surface These observations are consistent with the immediate formation of a surface chloride (AuCl3) during chlorine adsorption on Au(111) at 298 K without the intervention of an initial adsorbed overlayer.  相似文献   

18.
The ion angular distributions resulting from electron stimulated desorption (ESD) of oxygen and carbon monoxide chemisorbed on a tungsten (111) crystal have been determined. The O+ ions released during ESD of adsorbed oxygen exhibit three-fold symmetric angular distributions in orientational registry with the W(111) substrate. The CO+ and O+ ions released during ESD of a monolayer of CO are desorbed normal to the (111) surface. Models for both oxygen and CO adsorption are discussed. The data for CO are consistent with adsorption of CO in “standing up” carbonyl structures in the virgin and α-CO binding states.  相似文献   

19.
The adsorption of K on Pt(100) has been followed by thermal desorption spectroscopy (TDS) and Auger electron spectroscopy (AES); carbon monoxide was used as a probe for the modification of the chemical properties of K promoted surfaces. The role of subsequent adsorption of oxygen on the K modified surfaces has also been measured. For low potassium coverage (θK = 0 to 0.35), the mass-28 TDS peak temperature of adsorbed CO increases continuously with the K coverage, indicating an increase of the adsorption energy of CO which has been explained by a substantial charge donation from K into the 1 orbitals of CO via long range interactions through the platinum substrate. No oxygen uptake was detected after oxygen exposure at room temperature. For high potassium content (θK = 0.45 to 1), the mass-28 TDS peak temperature of coadsorbed CO is very narrow and remains constant at 680 K. We propose the formation of a COKPt surface complex which decomposes at 680 K, since K desorption is detected concomitantly to CO. On such K covered surfaces, the oxygen uptake is promoted, and it cancels the modifications of the surface properties induced by potassium.  相似文献   

20.
Reflection-adsorption infrared spectroscopy has been combined with thermal desorption and surface stoichiometry measurements to study the structure of CO chemisorbed on a {111}- oriented platinum ribbon under uhv conditions. Desorption spectra show a single peak at coverages > 1014 molecules cm?2, with the desorption energy decreasing with increasing coverage up to 0.4 of a monolayer, and then remaining constant at ≈135 kJ mol?1 until saturation. The “saturation” coverage at 300 K is 7 × 1014 molecules cm?2, and no new low temperatures state is formed after adsorption at 120 K. Infrared spectra show a single very intense, sharp band over the spectral range investigated (1500 to 2100 cm?1), which first appears at low coverages at 2065 cm?1 and shifts continuously with increasing coverage to 2101 cm?1 at 7 × 1014 molecules cm?2. The halfwidth of the band at 2101 cm?1 is 9.0 cm?1, independent of temperature and only slightly dependent on coverage. The band intensity does not increase uniformly with increasing coverage, and hysteresis is observed between adsorption and desorption sequences in the variation of both the band intensity and frequency as a function of coverage. The frequency shift and the virtual invariance of the absorption band halfwidt with increasing coverage (Jespite recent LEED evidence for overlayer compression in this system) are attributed to strong dipole-dipole coupling in the overlayer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号