首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Temperature dependences of dielectric permittivity in the improper ferroelastic phase, including the region of the improper ferroelastic phase transition occurring at T=Tc1, were studied in the betaine phosphite-betaine phosphate solid-solution crystals. At a betaine phosphate (BP) concentration of 10%, the phase transition temperature Tc1 was found to shift toward higher temperatures by about 5 K compared to betaine phosphite (BPI) crystals, where Tc1=355 K. The phase transition remains in the vicinity of the tricritical point. As the BP concentration in BPI is increased, the dielectric anomaly at T=Tc1 weakens substantially compared to pure BPI. The nonlinear temperature dependence of reciprocal dielectric permittivity in the improper ferroelastic phase of BPIxBP1?x crystals is described in the concentration region 0.9≤x≤1 in terms of a thermodynamic model taking into account the biquadratic relation of the nonpolar order parameter of the improper ferroelastic phase transition to polarization. The decrease in the ferroelectric phase transition temperature Tc1 (or in the temperature of loss of improper ferroelastic phase stability) with increasing BP concentration in the above limits is due to the decreasing effect of the nonpolar mode on the polar instability, which is accompanied by a weakening of the dielectric anomaly at T=Tc1  相似文献   

2.
Nuclear magnetic resonance studies on polycrystalline ferroelastic BiVO4 indicate that the 51V electric field gradient asymmetry parameter is an order parameter in the ferroelastic transition. Using ∩ = A(T?Tc)B, B is found to be 0.48(5), in good agreement with earlier studies of this material. Near the phase transition above and below, the vanadium nuclear quadrupole coupling is constant with a value of 4.8(1) MHz.  相似文献   

3.
The parameters of the long-wavelength exciton band for Rb2CdI4 films are investigated in the temperature range 90–410 K. It is found that the Rb2CdI4 films undergo a sequence of phase transitions at temperatures Tc1=380 K (paraphase → incommensurate phase), Tc2=290 K (incommensurate phase → ferroelastic phase I), and Tc3 = 210 K (ferroelastic phase I → ferroelastic phase II). The parameters of the exciton band (such as the spectral position and the half-width) measured during heating and cooling of the Rb2CdI4 film differ significantly. This is especially true for the incommensurate phase. Upon heating of the incommensurate phase, the domain boundaries become frozen, whereas the cooling of this phase is accompanied by the generation of solitons and their pinning, which, in turn, results in a first-order phase transition at the temperature Tc2. It is revealed that the oscillator strength of the exciton band anomalously increases in the range of existence of commensurate phase I (Tc3<-T<-Tc2) due to ordering of the Rb2CdI4 crystal lattice.  相似文献   

4.
We investigated the temperature dependences of the line shape, spin-lattice relaxation time, T1, and spin-spin relaxation time, T2, of the 1H nuclei in (NH4)4LiH3(SO4)4 single crystals. On the basis of the data obtained, we were able to distinguish the “ammonium” and “hydrogen-bond” protons in the crystals. For both the ammonium and hydrogen-bond protons in (NH4)4LiH3(SO4)4, the curves of T1 and T2 versus temperature changed significantly near the ferroelastic and superionic phase transitions at TC (=232 K) and TS (=405 K), respectively. In particular, near TS, the 1H signal due to the hydrogen-bond protons abruptly narrowed and the T2 value for these protons abruptly increased, indicating that these protons play an important role in this superionic phase transition. The marked increase in the T2 of the hydrogen-bond protons above TS indicates that the breaking of O-H?O bonds and the formation of new H-bonds with HSO4- contribute significantly to the high-temperature conductivity of (NH4)4LiH3(SO4)4 crystals.  相似文献   

5.
Ferroelectric phase transition in ammonium sulfate has been studied by ESR of CrO43? radical substituting for SO42? ion in (NH4)2SO4. In addition to discontinuous changes at Tc, certain continuous changes are observed in ESR parameters of this probe below Tc, which reflect the role of the sulfate ion in the phase transition. A microscopic mechanism of the phase transition is proposed and discussed in terms of the change of orientation of the sulfate tetrahedron through a finite angle. The degree of the change of orientation below Tc is thought to be the possible order parameter of the phase transition.  相似文献   

6.
The improper ferroelastic phase letovicite (NH4)3H(SO4)2 has been studied by 1H MAS NMR as well as by static 14N NMR experiments in the temperature range of 296–425 K. The 1H MAS NMR resonance from ammonium protons can be well distinguished from that of acidic protons. A third resonance appears just below the phase transition temperature which is due to the acidic protons in the paraelastic phase. The lowering of the second moment M2 for the ammonium protons takes place in the same temperature range as the formation of domain boundaries, while the signals of the acidic protons suffer a line narrowing in the area of Tc. The static 14N NMR spectra confirm the temperature of the motional changes of the ammonium tetrahedra. Two-dimensional 1H NOESY spectra indicate a chemical exchange between ammonium protons and the acidic protons of the paraphase.  相似文献   

7.
The nuclear spin lattice relaxation timeT 1 of the23Na,85Rb,87Rb,133Cs,14N nuclei is measured in NaCN, RbCN and CsCN as a function of temperature below and above the ferroelastic phase transition temperatureT c. BelowT c the behaviour ofT 1 of the alkali nuclei renders possible to determine the flip frequency of the CN molecules and its temperature dependence. AboveT c from the14NT 1 the correlation time τc of the rotational motions of the CN molecules and its temperature dependence is determined. An empirical rule is verified demonstrating that atT c the correlation times take nearly the same values for all cyanides. For the high and low temperature phases one obtains atT c about τc=5·10?13s and τc=5·10?11s, respectively. The results are discussed with respect to the mechanism of the phase transition.  相似文献   

8.
The structural properties and relaxation mechanisms of Li2KH(SO4)2 crystals were determined using the temperature dependences of NMR spectra and the spin-lattice relaxation times (T1) of their 1H, 7Li, and 39K nuclei. The results obtained were compared with the previously reported physical properties of LiKSO4 crystals. The substitution of the potassium ions with protons in the LiKSO4 crystals were variations in the phase transition temperatures, and the non-appearance of ferroelastic properties. The 7Li T1 for the Li2KH(SO4)2 crystals was much shorter than the 7Li T1 for the LiKSO4 crystals, and these findings indicate that the presence of the protons in Li2KH(SO4)2 causes the Li ions to move with greater freedom.  相似文献   

9.
Abstract

The paper reviews the results of experimental and theoretical studies of ferroic phase transitions in β-LiNH4SO4 and its deuterated analogue. β-LiNH4SO4 undergoes succesive phase transitions: a paraelectric - ferroelectric phase transition at T1 ? 462 K, a ferroelectric - ferroelastic phase transition at T2 ? 283 K and a transition from one ferroelastic phase to the other at T3 ? 28 K. Attention is focused on the influence of the order of phase transitions on the pattern of ferroelectric and ferroelastic domain structure, and also on the role played by the dynamics of molecular groups in the mechanism of transitions. The pre-transition effect connected with the ferroelectric-paraelectric transition: heterophase, capable of accounting for anomalies in different physical properties present 1-3 K below T1 is shown. The anomalous temperature variation of spontaneous polarisation of the crystal is discussed within the framework of the phenomenological model of weak ferroelectrics.  相似文献   

10.
In a broad temperature range of 4–300 K, we have performed a complex combined investigation of phase transitions in crystals of a ferroelastic K3Na(CrO4)2:MnO 4 2? using methods of Raman light scattering and IR light absorption. Considerable changes that we have observed in both Raman and IR spectra in the range of T ≈ 150 K testify to the occurrence of another phase transition that has not been observed before at this temperature. We have performed a group-theoretical analysis and compared its results with experimental spectra, which has allowed us to conclude that there are two phase transitions in this crystal, \(P\bar 3m1 \to C2/m \to C2/c\) , which occur at temperatures T c1 ≈ 230 K and T c2 ≈ 150 K, respectively.  相似文献   

11.
Proton diffusion in the room-temperature phase (phase II) of [(NH4)1?xRbx]3H(SO4)2 (0≤x≤1) has been studied by means of 1H spin-lattice relaxation times in the rotating frame, T. The 1H T values were measured at 200.13 MHz in the range of 380–490 K. The ammonium protons and the acidic protons have independent T values in the higher temperature range of phase II, suggesting that the spin diffusion between the two species is ineffective. The translational diffusion of the acidic protons is the most dominant mechanism to relax both the ammonium protons and the acidic protons in phase II. The 1H T values in phase II are analyzed theoretically and the motional parameters are obtained. The results of NMR well explain the macroscopic proton conductivity.  相似文献   

12.
InSU(2) lattice gauge theory, we study deviations from ideal gas behaviour near the deconfinement point. On lattices of sizeN σ 3 ×4,N σ=8, 12, 18 and 26, we calculate the quantityΔ≡(ε?3P)/T 4. It increases sharply just aboveT c , peaks atT/T c =1.15 ±0.05 and then drops quickly. This form of behaviour is shown to be the consequence of a second order phase transition. Dynamically it could arise because just aboveT c , the low momentum states of the system are remnant massive modes rather than deconfined massless gluons.  相似文献   

13.
The resistance R, the superconducting transition temperature Tc and the energy gap Δ(T) have been measured on the BaPb0.7Bi0.3O3 films up to 14 kbar. We have found that up to 14 kbar: (1) pressure suppresses Tc and Δ(T) while enhances R, (2) the value of 2Δ(0)/kTc is 3.8±0.1, independent of pressure, and (3) the Δ(T)/Δ(0) varies with T/Tc in a BCS fashion but only for T/Tc<0.75 and independent of pressure. The results show that BaPb1?xBixO3 is a weak-coupling superconductor, but fail to provide information about the cause for the high Tc of the compound.  相似文献   

14.
The temperature and pressure derivatives of the elastic constants of orthorhombic betaine borate, (CH3)3NCH2COO·H3BO3, have been determined by measuring temperature and stress induced shifts of resonance frequencies of thick plates at ca. 15 MHz in the range between 140 and 300 K and 0 and 3 kbar. The elastic ‘shear’ resistance c44 exhibits a value as low as 0.0492×1010Nm-2at 293 K. With decreasing temperature c44 approaches zero at ca. 142.5 K, indicating an acoustic soft mode behaviour connected with a ferroelastic phase transition. The softening of c44 is described in a good approximation by c44(T)p=0 =alogT/T0 with a=0.0663×1010Nm-2 and T0 = 139.5 K. Further, c44 decreases with increasing pressure according to the linear relation c44(p)T=293 K = 0.0492?0.184×10-4p (p in bar, c44 in 1010 Nm-2). All other elastic constants show a quite normal temperature and pressure dependence. At 293 K the transition is induced by a pressure of 2.65 kbar. The transition temperature Tc depends linearly on pressure according to Tc = 142.5+0.0568 p (pinbar, TcinK). Passing through the transition no discontinuous change of the lattice constants is observed. The three principal coefficients of thermal expansion and the pressure derivatives of the dielectric constants exhibit discontinuities at the transition. The transition is of strongly second order.  相似文献   

15.
Measurements of the electrical conductivity were performed in KHSO4 at pressures between 0.5 and 2.5 GPa and in the temperature range 120-350 °C by the use of the impedance spectroscopy. The temperatures of the α-β phase transition (TTr) and of the melting (Tm), determined from the Arrhenius plots ln(σT) vs. 1/T, increase with pressure up to 1.5 GPa having dT/dP∼+45 K/GPa. Above the pressure 1.5 GPa, the pressure dependencies of TTr and Tm are negative dT/dP∼−45 K/GPa. At pressures above 0.5 GPa, the reversible decomposition of KHSO4 into K3H(SO4)2+H2SO4 (and probably into K5H3(SO4)4+H2SO4) affects the electrical conductivity of KHSO4, with the typical values of the protonic electrical conductivity, c. 10−1 S/cm at 2.5 GPa.  相似文献   

16.
The temperature dependence of the LO-TO splitting of the A-modes of Pb5Ge3O11 between room temperature and Tc=450K was determined from the Raman spectrum. The finite splitting of two A-modes above Tc leads to the conclusion that the space group of Pb5Ge3O11 in the paraelastic phase deviates from P6 which was determined by X-ray and other physical methods.  相似文献   

17.
The temperature dependence of the elastic functions of the improper ferroelastic polytype 2MC-Sb5O7I has been investigated in the temperature range from room temperature to well above the structural phase transition atT c=481 K. The stiffnessesc(c*c*),c(a,a),c 22 andc(c*a) show a considerable softening up to 20% aroundT c whereasc 44 remains unaffected by the phase transition. The experimental results are discussed considering cubic and quartic anharmonic coupling between two components of the zone boundary order parameter and elastic waves.Carried out in Laboratories RCA Ltd, Zürich, SwitzerlandCarried out in Fakultät für Physik der Universität, Regensburg, Federal Republic of Germany  相似文献   

18.
The phase transition at Tc=172(2) K and high as well as the low temperature structures at 205 K and 17 K were studied with a low temperature Guinier diffractometer and camera. A second order phase transition (Γ-condensation of the T1g mode) lowers the symmetry from Fm3m at T>;Tc to I4/m at T<Tc. In the low temperature phase the octahedra are tilted (5.2 degrees at 17 K) and slightly stretched. The increase of the tilt angle and the linear increase of the tetragonal distortion suggests a mean field power law. This classical behaviour would agree with the assumption of a Jahn Teller splitting of the Ho3+ electronic state.  相似文献   

19.
The heat capacity of [NH2(CH3)2]2 · CuCl4 crystals prior to and after γ-irradiation with doses of 1, 5, 10, and 50 MR is measured by the calorimetric method in the temperature range 80–300 K. It is found that, as the temperature decreases, the temperature dependence C p (T) exhibits two anomalies which correspond to phase transitions from the incommensurate to the ferroelectric phase at T c =281 K and from the ferroelectric to the ferroelastic phase at T 1=255 K. The nature of the anomalies is typical of a first-order phase transition. In addition, a smeared anomaly in the form of a small increase in the heat capacity of the ferroelectric phase is observed at T≈275 K. It is demonstrated that when the dose of γ-irradiation increases, the anomalies decrease in magnitude and the phase transition temperatures are displaced: T c increases and T 1 decreases.  相似文献   

20.
In the last few years evidence has been accumulating that there are a multiplicity of energy scales which characterize superconductivity in the underdoped cuprates. In contrast to the situation in BCS superconductors, the phase coherence temperature Tc is different from the energy gap onset temperature T. In addition, thermodynamic and tunneling spectroscopies have led to the inference that the order parameter Δsc is to be distinguished from the excitation gap Δ; in this way, pseudogap effects persist below Tc. It has been argued by many in the community that the presence of these distinct energy scales demonstrates that the pseudogap is unrelated to superconductivity. In this paper, we show that this inference is incorrect. We demonstrate that the difference between the order parameter and excitation gap and the contrasting dependences of T and Tc on hole concentration x and magnetic field H follow from a natural generalization of BCS theory. This simple generalized form is based on a BCS-like ground state, but with self-consistently determined chemical potential in the presence of arbitrary attractive coupling g. We have applied this mean field theory with some success to tunneling, transport, thermodynamics, and magnetic field effects. We contrast the present approach with the phase fluctuation scenario and discuss key features which might distinguish our precursor superconductivity picture from that involving a competing order parameter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号