首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
In this paper, a kind of aromatic carboxylic acid of sulfhydryl group (2-mercaptonicotinic acid) is modified with four silane crosslinking reagents (3-methacryloyloxypropyltrimethoxysilane (S1), 3-glycidoxypropyltrimethoxysilane (S2), 3-aminopropyltrimethoxysilane (S3), and 3-(triethoxysilyl)propylisocyanate (S4)) to achieve four new kinds of functionalized molecular bridge (Pi (i = 1-4)). Subsequently, four molecular bridges and lanthanides (europium and terbium) or zinc ions have been assembled via chemical bonds through a sol-gel (cohydrolysis and copolycondensation) process with inorganic precursor (tetraethoxysilane, TEOS), resulting in four novel series of chemically bonded hybrid materials which named as Ln (Zn)-Mi (i = 1-4). The coordinated bonding makes metal ions evenly dispersed in a stable hybrid system. The intramolecular energy transfer process between lanthanide ions and the molecular bridges take place within these molecular-based hybrids and especially the luminescent quantum efficiency of them are determined, suggesting that the hybrid material systems derived from different molecular bridges present different luminescence efficiencies.  相似文献   

2.
A novel molecular precursor (abbreviated as TAM-Si) derives from thioacetaminde (TAM) modified by 3-(triethoxysilyl)-propyl isocyanate (TEPIC) though the hydrogen transfer addition reaction. Then TAM-Si behaves as functional molecular bridge which coordinates to RE3 (Eu3+, Tb3+) as well as form SiO network with inorganic precursor (TEOS) after a sol–gel process (cohydrolysis and copolycondensation reaction), resulting in the covalently bonded hybrid materials (RE–TAM-Si). On the other hand, the hybrid material of TAM-Si without introduction of RE3+ as well has been obtained. SEM pictures indicate that the TAM-Si show the sphere micromorphology with particle size of micrometer dimension while RE–TAM-Si hybrids present different nanometer particle, which suggests that lanthanide ions has influence on the microstructure of hybrid systems through its coordinated effect. The blue emission for TAM-Si hybrids and the narrow-width green and red emissions were achieved for Tb3+ and Eu3+ ions, respectively, indicating that the intramolecular energy transfer process take place from photoactive group to Tb3+ and Eu3+ ions in these hybrid microsphere systems. Especially the lifetime and quantum efficiency for europium hybrids have been determined.  相似文献   

3.
According to coordination chemistry principle and molecular assembly technology, series of ternary lanthanide centered hybrid systems have been constructed through coordination bonds. Among one component (ligand) is organically modified Si-O network, which originates from the functional molecular bridge (BFPPSi) by the functionalization of 1,3-bis(2-formylphenoxy)-2-propanol (BFPP) with 3-(triethoxysilyl)propyl isocyanate. In the second component (ligand), three different organic polymeric chains are introduced, poly-(methyl methacrylate) (PMMA, from the polymerization of MMA with the benzoyl peroxide [BPO] as the initiator), poly-(methyl acrylic acid) (PMAA, from the polymerization of MAA with the BPO as the initiator), polyvinyl pyridine, respectively. All these ternary hybrid materials show homogeneous, regular microstructure, suggesting the existence of assembly process of lanthanide centers, inorganic Si-O network and organic polymer chain. Compared to the binary hybrids without polymer chain, the photoluminescent properties of these ternary hybrids present stronger luminescent intensities, longer lifetimes and higher luminescent quantum efficiencies indicating that the introduction of organic polymer chain is favorable for the luminescence of the whole hybrid systems.  相似文献   

4.
1,3-Bis(2-formylphenoxy)-2-propanol (BFPP) was first synthesized and then grafted to 3-(triethoxysilyl)propyl isocyanate (TESPIC) to achieve a molecular precursor BFPP-Si through the hydrogen-transfer nucleophilic addition reaction between the hydroxyl group of BFPP and the isocyanate group of TESPIC. Then, a chemically bonded lanthanide/inorganic/organic hybrid material (BFPP-Si-Ln) was constructed using BFPP-Si as a bridge molecule that can both coordinate to lanthanide ions (Eu3+ or Tb3+) and form an inorganic Si-O network with tetraethoxysilane (TEOS) after cohydrolysis and copolycondensation processes. Furthermore, two types of ternary rare-earth/inorganic/organic hybrids (BFPP-Si-Dipy-Ln and BFPP-Si-Phen-Ln) were assembled by the introduction of the second ligands (4,4'-bipyridyl and 1,10-phenanthroline) into the above system. All of these hybrid materials exhibit homogeneous microstructures and morphologies, suggesting the occurrence of self-assembly of the inorganic network and organic chain. Measurements of the photoluminescent properties of these materials show that the ternary rare-earth/inorganic/organic hybrids present stronger luminescent intensities, longer lifetimes, and higher luminescent quantum efficiencies than the binary hybrids, indicating that the introduction of the second ligands can sensitize the luminescence emission of the lanthanide ions in the ternary hybrid systems.  相似文献   

5.
Three kinds of novel macrocylic calix[4]arene derivatives functionalized SBA-15 type of mesoporous hybrids (Calix-S15, Calix-NO(2)-S15 and Calix-NH(2)-S15) are synthesized by co-condensation of tetraethoxysilane (TEOS) and modified organic ligand (Calix-Si, Calix-NO(2)-Si and Calix-NH(2)-Si) in the presence of Pluronic P123 surfactant as a template. The structural preservation of these three parent materials is confirmed by FTIR spectra, (29)Si MAS NMR spectra, XRD pattern, and N(2) adsorption-desorption measurements. The ternary mesoporous luminescent hybrids containing Ln(3+) (Eu(3+), Tb(3+)) complexes covalently attached to the functionalized ordered mesoporous SBA-15, which are designated as Ln(Calix-S15)phen, Ln(Calix-NO(2)-S15)phen and Ln(Calix-NH(2)-S15)phen, are obtained by introducing lanthanide ions and 1,10-phenanroline into the corresponding parent material via covalent bond assembling methods. XRD pattern, TEM and N(2) adsorption-desorption measurements are employed to characterize the mesostrcture of the resulting lanthanide mesoporous hybrids. The photoluminescent behavior (luminescence, lifetime, quantum efficiency, and energy transfer) for these chemically bonded mesoporous hybrids is studied in detail. Also, their quantum efficiencies are determined, which indicates that the different mesoporous hybrid material systems derived from different functionalized calix[4]arene derivative bridges present different luminescence behavior.  相似文献   

6.
A novel polysilsesquioxane bridge (PPSSi) is synthesized with methylene group modification of phenylphenacyl sulfoxide by isocyanate group from 3-(triethoxysilyl)propyl isocyanate (TEPIC). Then ternary lanthanide (Eu, Tb) hybrids of polysilsesquioxane bridge (PPSSi) and four kinds of polymer chain (polyacrylamide (PAM), polyvinylpyrrolidone (PVP), polymethyl methacrylate (PMMA) and polyethyl methacrylate (PEMA) were assembled wth coordination bonding. To explore the influence of the different polymeric chains on the properties of lanthanide hybrids, the microstructure and photoluminescent properties of these lanthanide coordination polymer hybrids (PPSSi-Ln-PAM (PVP, PMMA, PEMA)) are compared in detail. Four organic polymer chains with different structures not only can coordinate to the lanthanide ions by their own carbonyl groups, but also can form a polymeric matrix together with the inorganic Si-O network. The results show that all the obtained hybrids could show efficient intramolecular energy transfer and lead to excellent characteristic emission of lanthanide ions. Moreover, the different structures of the polymers induce different microstructures and different photoluminescent behavior (lifetime and quantum efficiency) for these hybrid systems. The PPSSi-Ln-PMMA hybrid leads to the longest lifetime and highest quantum efficiency.  相似文献   

7.
In this paper, two long chain aliphatic carboxylic acids (oleic acid [OLA] and stearic acid [STA]) are modified with cross-linking molecules (N-2-aminoethyl-3-aminopropyl-methyl-dimethoxylsiliane, (AEAPMMS, H(2) N(CH(2))(2)HN(CH(2))(3)SiCH(3)(OCH(3))(2) and 3-aminopropyl-methyl-diethoxylsiliane (APMES, H(2) N(CH(2))(3)SiCH(3)(OC(2)H(5))(2)) resulting in four new kinds of structural molecular bridge OLA (STA)-AEAPMMS (APMES). Subsequently, ternary molecular complex systems with four molecular bridges OLA (STA)-AEAPMMS (APMES) and 2,2-bipyridyl (bipy) of lanthanides (terbium and europium) or zinc ions were assembled, which resulted in four novel kinds of quaternary molecular hybrid materials (named as bipy-Ln (Zn)-OLA (STA)-AEAPMMS (APMES) with strong chemical bonds (N-Ln(Zn)-O coordination bonds and Si-O covalent bonds) after a sol-gel (cohydrolysis and copolycondensation) process of the modified molecular bridges (as structural ligand) with inorganic precursor (tetraethoxysilane, TEOS). And especially bipy behaves as functional ligand to sensitize the luminescence of terbium or europium ions through the effective intramolecular energy transfer process, which gives rise to the characteristic emission of metal ions. The design and assembly from structural and functional ligands can help achieve a candidate technology for molecular hybrids.  相似文献   

8.
This work focuses on the construction of a series of chemically bonded rare-earth/inorganic/organic hybrid materials (TCH-Si-Ln, TCH-Si-Ln-Phen and TCH-Si-Ln-Bipy: Phen = 1,10-phenanthroline, Bipy = 2,2′-bipyridyl) using TCH-Si as an organic bridge molecule that can both coordinate to rare-earth ions (Eu3+ and Tb3+) and form an inorganic Si-O-Si network with tetraethoxysilane (TEOS) after cohydrolysis and copolycondensation through a sol-gel process. All of these hybrid materials exhibit homogeneous microstructures and morphologies, suggesting the occurrence of self-assembly of the inorganic network and organic chain. Measurements of the photoluminescent properties of these materials show that the ternary europium systems present stronger luminescent intensities than the binary hybrids, indicating that the introduction of the second ligands can sensitize the luminescence emission of the europium hybrid systems. However, in the terbium systems, this phenomenon was not observed.  相似文献   

9.
This work focuses on the synthesis of a series of chemically bonded lanthanide/inorganic/organic hybrid materials (CE-15-Si-Ln, CE-16-Si-Ln, CE-18-Si-Ln) containing a novel aza-crown ether organic component. The materials show red emission (Ln = Eu), green emission (Ln = Tb) and near-infrared (NIR) luminescence (Ln = Nd). Three functional molecular precursors (denoted as CE-15-Si, CE-16-Si, CE-18-Si) have been synthesized with two or three N-substituted pendant arms containing chelating groups which can not only fulfill the high coordination numbers of Ln(3+) ions but also form an inorganic Si-O-Si network with tetraethoxysilane (TEOS). The resulting amorphous materials exhibit regular uniform microstructures for the organic and the inorganic components which are covalently linked through Si-O bonds via a self-assembly process. These hybrids present strong luminescent intensities in red, green and NIR ranges by embedding selected Ln(3+) ions into the hybrid system, which may lead to potential applications in organic electroluminescence displays, light emitting devices, functional membranes or chemical/biomedical sensors.  相似文献   

10.
A series of novel photoactive hybrid materials with organic parts covalently linked to inorganic parts via the acylamino group have been assembled by sol–gel process. The organic parts as molecular bridge derive from α-hydroxypyridine (HP) functionalized by 3-(triethoxysilyl)-propyl isocyanate (TESPIC). Finally homogeneous, molecular-based hybrid materials with different microstructure (uniform spherical or clubbed) are obtained, in which no phase separation is observed. This may be ascribed as the different coordination behavior of metal ions (Eu3+ (Tb3+) or Zn2+). Red emission of Eu–HP–Si, green emission of Tb–HP–Si and violet-blue luminescence of Zn–HP–Si hybrids can be achieved within these molecular-based hybrid materials. Besides, both Eu(Tb) and Zn are introduced into the same hybrid systems (Eu(Zn)–HP–Si or Tb(Zn)–HP–Si) through the covalent Si–O bond, whose sphere particle size can be modified. Especially the photoluminescence behavior can be enhanced, suggesting that intramolecular energy transfer takes place between inert Zn2+ and Eu3+ (Tb3+) in the covalently bonded hybrid systems.  相似文献   

11.
1,3‐Diphenyl‐1,3‐propanepione (DBM)‐functionalized SBA‐15 and SBA‐16 mesoporous hybrid materials (DBM‐SBA‐15 and DBM‐SBA‐16) are synthesized by co‐condensation of modified 1,3‐diphenyl‐1,3‐propanepione (DBM‐Si) and tetraethoxysilane (TEOS) in the presence of Pluronic P123 and Pluronic F127 as a template, respectively. The as‐synthesized mesoporous hybrid material DBM‐SBA‐15 and DBM‐SBA‐16 are used as the first precursor, and the second precursor poly(methylacrylic acid) (PMAA) is synthesized through the addition polymerization reaction of the monomer methacrylic acid. These precursors then coordinate to lanthanide ions simultaneously, and the final mesoporous polymeric hybrid materials Ln(DBM‐SBA‐15)3PMAA and Ln(DBM‐SBA‐16)3PMAA (Ln=Eu, Tb) are obtained by a sol‐gel process. For comparison, binary lanthanide SBA‐15 and SBA‐16 mesoporous hybrid materials (denoted as Ln(DBM‐SBA‐15)3 and Ln(DBM‐SBA‐16)3) are also synthesized. The luminescence properties of these resulting materials are characterized in detail, and the results reveal that ternary lanthanide mesoporous polymeric hybrid materials present stronger luminescence intensities, longer lifetimes, and higher luminescence quantum efficiencies than the binary lanthanide mesoporous hybrid materials. This indicates that the introduction of the organic polymer chain is a benefit for the luminescence properties of the overall hybrid system. In addition, the SBA‐15 mesoporous hybrids show an overall increase in luminescence lifetime and quantum efficiency compared with SBA‐16 mesoporous hybrids, indicating that SBA‐15 is a better host material for the lanthanide complex than mesoporous silica SBA‐16.  相似文献   

12.
Nicotinic acid (NA) is grafted to titanium alkoxide to achieve functional precursor Ti-NA, which then is coordinated to lanthanide ions (Tb3+/Eu3+) to prepare the binary titania hybrid materials Ti-NA-Eu/Ti-NA-Tb via a sol–gel process in the presence of water. Furthermore, two types of ternary titania hybrid materials, Ti-NA-Ln-PMAA/Ti-NA-Ln-PVP, are assembled by the introduction of the organic polymers polymethacrylic acid (PMAA)/polyvinylpyrrolidone (PVP) into the above system. The FTIR spectra of these titania hybrid materials confirm their basic composition, and the X-ray diffraction patterns reveal that they are amorphous. Luminescence spectra and lifetimes of these titania hybrids are recorded, revealing that these hybrid materials with organic polymers exhibit longer luminescence lifetimes and higher quantum efficiencies.  相似文献   

13.
Functional photoluminescent materials are emerging as a fascinating subject with versatile applicability. In this work, luminescent organic-inorganic hybrid hydrogels are facilely designed through supramolecular self-assembly of sodium cholate, and lanthanide ions such as Eu(3+), Tb(3+), and Eu(3+)/Tb(3+). Fluorescence microscopy and TEM visualization demonstrates the existence of spontaneously self-assembled nanofibers and 3D networks in hybrid hydrogel. Photoluminescence enhancement of lanthanide ions is realized through coordination with cholate and co-assembly into 1D nanofibers, which can successfully shield the Eu(3+) from being quenched by water. The photoluminescence emission intensity of a hybrid hydrogel exhibits strong dependence on europium/cholate molar ratio, with maximum emission appearing at a stoichiometry of 1:3. Furthermore, the emission color of a lanthanide-cholate hydrogel can be tuned by utilizing different lanthanide ions or co-doping ions. Moreover, photoluminescent lanthanide oxysulfide inorganic nanotubes are synthesized by means of a self-templating approach based on lanthanide-cholate supramolecular hydrogels. To the best of our knowledge, this is the first time that the lanthanide oxysulfide inorganic nanotubes are prepared in solution under mild conditions.  相似文献   

14.
Two routes of incorporation of europium(III) salts into cyclam-containing hybrid materials have been explored, to elucidate the coordination mode of EuIII in cyclam-containing hybrid materials in a study of the arrangement of cyclam moieties during the solgel process. They were 1) complexation of europium salts by N-tetrasubstituted 1,4,8,11-tetraazacyclotetradecane (cyclam) derivatives bearing four hydrolysable Si(OEt)3 groups, followed by hydrolysis and polycondensation of these complexes; and 2) hydrolysis and polycondensation of N-tetrasubstituted silylated cyclam derivatives, then incorporation of europium salts directly into the hybrid materials. The coordination mode of europium salts within solids is not the same as in solution. In solution, the complexation of EuIII with cyclam is not possible; it requires cyclam derivatives containing N-chelating substituents such as amido groups in an appropriate geometry. In contrast, the incorporation of EuIII into hybrid materials is always possible, whatever the nature of the arms of the cyclam moieties. Thus, EuIII uptake is one EuIII/two macrocycles with cyclam moieties containing N-alkyl substituents. This constitutes the first example of 4N + 4N lanthanide coordination.  相似文献   

15.
The functional silica microspheres are derived from the three different silane crosslinking reagents, and then the polyvinyl pyridine-based rare earth hybrids are synthesized through free radical copolymerization of rare earth–vinyl pyridine complex monomer with these functionalized silica microspheres (RE = Eu, Tb). The obtained hybrids are characterized by Fourier transform infrared, X-ray diffraction, Scanning electronic microscope and photoluminescence spectra. The intramolecular energy transfer process between rare earth ions and polymer polyvinyl pyrrolidone matrices took place within these polymer-based hybrids and especially the quantum efficiency of europium hybrids are determined, suggesting that the hybrid material systems derived from different functional silica microspheres present different luminescence efficiencies.  相似文献   

16.
Li H  Bu W  Qi W  Wu L 《The journal of physical chemistry. B》2005,109(46):21669-21676
A series of europium alkanoates (C(n-1)H(2n-1)CO(2))(3)Eu, (n = 14, 16, 18, 20) have been synthesized and characterized in detail. X-ray diffraction and Fourier transform infrared spectroscopic measurements confirm the multibilayer structure of these homologues. In such bilayers, the europium ionic layers are well separated by the highly ordered alkyl chains which are in an all-trans conformation and perpendicular to both sides of the europium ionic layers. There is a mixed-coordination type of chelating bidentate and bridging bidentate between the carboxylate groups and the europium ions. All samples exhibit characteristic emission of europium, though the luminescent intensity has been partly quenched by the carboxylate groups. Differential scanning calorimetry (DSC) shows multiple melting points for these homologues, and temperature-dependent X-ray diffraction measurements also confirm the existence of the mesophase on heating. This mesophase is not truly liquid crystalline, but is similar to the smectic A phase of organic rodlike molecules. Meanwhile, it seems that with increasing atomic number of lanthanide ions, longer alkyl chains will be required to form such a mesophase for the corresponding lanthanide alkanoates.  相似文献   

17.
A series of novel organic/inorganic rare earth (europium, terbium) hybrid materials through the coordination bond and covalent bond are synthesized and form an inorganic Si-O-Si by the sol-gel process. Mercapto-functionalized 4-mercaptobenzoic acid (MBA-Si) is obtained by using MBA and 3-(triethoxysilyl)-propyl isocyanate (TESPIC) as an organic bridge molecule, and then the carboxyl group of the precursor MBA-Si is used to modify the titanium dioxide, so as to sensitize the luminescence of rare earth ions. CdS-TiO(2) is added to observe the influence of photoluminescence. 3-mercaptopropyltrimethoxysilane (MPS) is also used to modify the CdS quantum dot and obtain MPS functionalized MPS-CdS nanocomposite. These multicomponent hybrids with double cross-linking siloxane (MBA-Si) covalently bonding MPS-CdS are characterized. Subsequently, 1,10-phenanthroline (Phen) and 2,2,-bipyridyl (Bipy) as the assistant ligands together with water molecules are introduced into the rare earth hybrid system. The FT-IR, X-ray diffraction, UV-Vis, thermogravimetry and especially the photoluminescence properties of them are studied in detail.  相似文献   

18.
Three novel silica-based organic–inorganic hybrid materials containing the different Schiff-base organic compounds have been prepared through a covalent bonding self-assembly process via a sol–gel technology. The organic parts N,N′-bis(salicylidene)-1,3-propanediamine, N,N′-bis(salicylidene)-thiocarbohydrazide, and N,N′N′′-tris(salicylidene)-(2-aminoethyl) amine are firstly synthesized and then functionalized by trialkoxysilyl groups through the hydrogen transfer reaction. The as-obtained silylated precursors are afterward submitted to hybridization with tetraethoxysilane (TEOS) through a polycondensation or cross-linking reaction between the terminal silanol groups of the silylated precursors and the OH groups of hydrolyzed TEOS. The resulting materials exhibit like-rods morphology with no phase separation because of the Si–O covalently bonded self-assemble process between the Schiff-base organic compounds and the silica network. Thermogravimetric analysis shows that the thermal stability is enhanced compared with the organic compounds. These hybrids present the strong luminescence in visible region due to its abundant energy absorption in ultraviolet–visible area and the shallow holes within the band gap. Especially the hybrids from N,N′-bis(salicylidene)-thiocarbohydrazide functional linkage exhibits the main absorption in blue region and emission in green region, which can realize the visible light conversion.  相似文献   

19.
Hybrid Eu3+-doped silica-poliethyleneoxide (PEO) nanocomposites with covalent bonds between the inorganic (siloxane) and organic (PEO) phases have been obtained by sol-gel process. These materials are transparent, flexible and present high Eu3+ luminescence output. Their luminescence properties, local environment around europium ions and structure have been investigated as a function of europium content. EXAFS measurements indicate that the increase in Eu-doping induces a decrease in Eu3+ coordination number. An increase in symmetry degree around the metal ion is also observed for increasing Eu3+ concentration, while non radiative decay paths from the 5D0 excited state become more important. SAXS results suggest the preferential interaction of europium ions with ether-type oxygens of the polymer chains. However, the existence of interactions between the cations and the carbonyl groups from urea bridges located at the siloxane-PEO interface can not be excluded.  相似文献   

20.
Novel luminescent silicone hybrids (LSHs) containing lanthanide ions were prepared via different sol–gel processes. The precursor, dimethyl ester‐functionalized silane, was synthesized via a facile amino‐ene reaction. The coordinated assembly of the ester ligands and lanthanide ions (Eu3+, Tb3+ and Dy3+) occurred. The ester ligands were immobilized onto the Si‐O network backbone during the preparation of the silicone hybrid materials. The particle size can be controlled to ca 50 nm by adjusting the solvent ratio. The obtained materials were characterized by Fourier transform infrared, 1H nuclear magnetic resonance spectroscopy (NMR), 13C NMR, 28Si NMR, X‐ray diffraction, X‐ray photoelectron spectroscopy, thermogravimetric analysis, high‐resolution scanning electronic microscopy and luminescent (excitation and emission) spectroscopy. The coordination state and photophysical performance of the compounds were studied in detail. The terbium‐ and europium‐containing materials show sharp green and red emissions, respectively, which indicate that efficient intramolecular energy transfer took place in these LSHs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号