首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The differences in chemical shift anisotropies, dipolar couplings, and quadrupolar couplings of two enantiomers in the chiral liquid crystalline media are employed to visualize enantiomers. In spite of the fact that proton has high magnetic moment and is abundantly present in all the chiral molecules, 1H NMR is not exploited to its full potential because of severe overlap of unresolved transitions arising from long- and short-distance couplings. Furthermore, the two spectra from R and S enantiomers result in doubling of the number of observable transitions. The present study demonstrates the application of the selectively excited homonuclear double quantum (DQ) coherence correlated to its single quantum coherence of an isolated methyl group in a chiral molecule. The DQ dimension retains only the passive couplings within the protons of the methyl group while the long-distance passive couplings are refocused, removing the overlap of central transitions, and each enantiomer displays a doublet instead of a triplet unlike in regular selective refocusing experiment. The doublet separation being different for each enantiomer results in their discrimination. The cross section taken along the single quantum dimension pertaining to each transition in the DQ dimension provides the one-dimensional spectra for each individual enantiomer with the complete removal of the overlapped transitions from the other enantiomer. The experiment is robust, the pulse sequence is easy to implement, and the methodology has been demonstrated on different chiral molecules.  相似文献   

2.
Real‐time band‐selective homonuclear 1H decoupling during data acquisition of z‐filtered J‐resolved spectroscopy produces 1H‐decoupled 1H NMR spectra and leads to sensitivity enhancement and improved resolution, and thus aids the measurement of J couplings and residual dipolar couplings in crowded regions of 1H NMR spectrum. High quality spectra from peptides, organic molecules, and also from enantiomers dissolved in weakly aligned chiral media are reported.  相似文献   

3.
The proton NMR spectra of fluorine-substituted benzamides are very complex (Figure 1) due to severe overlap of (1)H resonances from the two aromatic rings, in addition to several short and long-range scalar couplings experienced by each proton. With no detectable scalar couplings between the inter-ring spins, the (1)H NMR spectra can be construed as an overlap of spectra from two independent phenyl rings. In the present study we demonstrate that it is possible to separate the individual spectrum for each aromatic ring by spin system filtering employing the multiple-quantum-single-quantum correlation methodology. Furthermore, the two spin states of fluorine are utilized to simplify the spectrum corresponding to each phenyl ring by the spin-state selection. The demonstrated technique reduces spectral complexity by a factor of 4, in addition to permitting the determination of long-range couplings of less than 0.2 Hz and the relative signs of heteronuclear couplings. The technique also aids the judicious choice of the spin-selective double-quantum-single-quantum J-resolved experiment to determine the long-range homonuclear couplings of smaller magnitudes.  相似文献   

4.
NMR spectra of molecules oriented in liquid crystals provide homo- and heteronuclear dipolar couplings and thereby the geometry of the molecules. Several inequivalent dilute spins such as 13C and 15N coupled to protons form different coupled spin systems in their natural abundance and appear as satellites in the proton spectra. Identification of transitions belonging to each spin system is essential to determine heteronuclear dipolar couplings, which is a formidable task. In the present study, using 15N-1H and 13C-1H HSQC, and HMQC experiments we have selectively detected spectra of each rare spin coupled to protons. The 15N-1H and 13C-1H dipolar couplings have been determined in the natural abundance of 13C and 15N for the molecules pyrazine, pyrimidine and pyridazine oriented in a thermotropic liquid crystal.  相似文献   

5.
We demonstrate prochiral and chiral spectral resolution using residual (2)H NMR quadrupolar splittings over a wide range of anisotropic conditions in liquid samples. We use a reversible gel-stretching/compressing device in a conventional high-field NMR spectrometer. We show the stability of gelatin gels as well as their unique ability to switch between multiple stretched and compressed states, thus also changing the sign of residual dipolar couplings in (1)H and (13)C NMR. This flexibility will be important for resolving spectra of mixtures of other chiral compounds and for structure determination of selected peptides.  相似文献   

6.
19F and 1H NMR spectra of halocarbons   总被引:1,自引:0,他引:1  
19F NMR chemical shifts and coupling constants are reported for 215 compounds. For 77 of these compounds, 1H NMR spectral data are also given. Long-range couplings, including 8J(F,F) and 5J(F,H), are reported. The complexity of halocarbon spectra owing to the presence of rotational isomers, asymmetric centers, long-range couplings, and chlorine isotope effects are illustrated, and the methods used for analyzing such complex spectra are briefly discussed.  相似文献   

7.
We report the use of carbon-proton heteronuclear selective refocusing 2D NMR experiments dedicated to the spectral analysis of enantiomers dissolved in weakly ordering chiral liquid crystalline solvents. The method permits the extraction of carbon-proton residual dipolar couplings for each enantiomer from a complex or unresolved proton-coupled 13C spectral patterns. Illustrative examples are analysed and discussed. It is shown that an accurate determination of enantiomeric excess is possible.  相似文献   

8.
Nuclear magnetic resonance (NMR) spectroscopy provides atomic-level molecular structural information. However, in molecules containing unpaired electron spins, NMR signals are difficult to measure directly. In such cases, data is obtained using the electron-nuclear double resonance (ENDOR) method, where nuclei are detected through their interaction with nearby unpaired electron spins. Unfortunately, electron spins spread the ENDOR signals, which challenges current acquisition techniques, often resulting in low spectral resolution that provides limited structural details. Here, we show that by using miniature microwave resonators to detect a small number of electron spins, integrated with miniature NMR coils, one can excite and detect a wide bandwidth of ENDOR data in a single pulse. This facilitates the measurement of ENDOR spectra with narrow lines spread over a large frequency range at much better spectral resolution than conventional approaches, which helps reveal details of the paramagnetic molecules’ chemical structure that were not accessible before.  相似文献   

9.
Methods for the assignment of the quadrupolar doublets in the deuterium NMR spectra of weakly ordered, perdeuterated or partially deuterated enantiomers dissolved in chiral liquid crystals are described which use robust 2D correlation NMR experiments. To overcome a lack of resolution in deuterium tilted Q-COSY 2D spectra in such materials, we propose and explore a correlation 2D sequence which is based on deuterium-carbon 2D correlation spectroscopy. The technique results in a (13)C-(2)H contour plot and allows the full resonance assignment of overcrowded deuterium 1D spectra using carbon-deuterium correlations. The (2)H autocorrelation and (13)C-(2)H correlation experiments are applied in the case of a racemic mixture of 2-ethylhexanoic acid-d(15) dissolved in a polypeptidic chiral oriented solvent. The performance and the limits of both techniques are presented and discussed. For the last step of the assignment procedure, we propose a simple method for obtaining two coherent sets of quadrupolar splittings, one for each enantiomer.  相似文献   

10.
The discrimination and analysis of the NMR spectra of optically active molecules dissolved in chiral liquid crystal solvents through 2D correlation experiments is studied. The technique allows the identification of the line positions of each enantiomer, thus providing a notable simplification of the spectral analysis. The 2D HOHAHA and multiple-quantum experiments are investigated and discussed. The potential of the method is illustrated using a sample of (±) 3,3,3-trichloroepoxypropane dissolved in a thermotropic cholesteric solvent. The case of chiral molecules bearing a fluorine or deuterium nucleus has also been studied. In addition, it is shown that 2D heteronuclear correlation experiments are powerful methods for correlating carbon and proton spectral data of two enantiomers. A specific example is given through (±) 2-bromopropanoic acid dissolved in a lyotropic polypeptide liquid crystal. Spectral parameters of each enantiomer are calculated for the different examples.  相似文献   

11.
A NMR method is described that permits simultaneous measurement of the geminal 2JH1H2 + 2DH1H2 splitting and the sum of the 1JCH1 + 1DCH1 + 1JCH2 + 1DCH2 couplings for methylene groups, where 2DH1H2 and 1DCH are residual dipolar couplings, occurring when molecules are weakly oriented relative to the magnetic field. By suppressing either the upfield or downfield half of the 1H-1H geminal doublet, the experiment yields improved resolution relative to regular two-dimensional 1H-13C correlation spectra, making it applicable to systems of considerable complexity. The method is demonstrated for measurement of all 2DH5'H5' couplings in a 24-nucleotide 13C-enriched RNA stem loop structure, weakly aligned in liquid crystalline Pf1. The method is equally applicable to methylene groups in 13C-labeled proteins and to natural abundance samples of smaller molecules.  相似文献   

12.
We report 2H and 13C NMR spectra of the crown and saddle isomers of nonamethoxy-tribenzocyclononene (1), dissolved in lyotropic achiral and chiral liquid-crystalline solutions based on poly-gamma-benzyl-glutamate and poly-gamma-benzyl-L-glutamate (PBG and PBLG). The 2H-[1H] measurements include spectra of compound 1 deuterated in the ring methylene and in the aromatic sites as well as of the methyl groups in natural abundance. Carbon-13 spectra were recorded in natural abundance as well as in two isotopomers enriched in the ring methylene and one of the methoxy groups. The crown isomer (c-1) is rigid with C3 symmetry and can be separated into its enantiomers using a chiral high-performance liquid chromatography column. The NMR spectra of racemic c-1 in PBLG solutions exhibit two sets of lines due to the enantiomers. The peaks were identified by comparing the spectra with those of the neat enantiomers. Analysis of the 2H quadrupolar splittings and the 13C residual chemical shift anisotropies shows that the dominant factor determining the chiral discrimination is the difference in the ordering of the two enantiomers in the chiral liquid crystals. The saddle isomer (s-1) is highly flexible, undergoing fast pseudorotation between six conformers. The "frozen" conformers have C1 symmetry and are therefore chiral. Three of these comprise one enantiomer, and the other three the second one. However, the rapidly interconverting species has, on the average, a C3h symmetry and is therefore achiral. The methylene groups in the latter are, however, prostereogenic, and their hydrogen/deuterium-carbon bonds constitute enantiotopic pairs. The 2H NMR spectra of the s-1 methylene-deuterated in PBLG solutions exhibit, in fact, enantio-discrimination with two quadrupolar doublets. This is in contrast to rigid prochiral molecules with a threefold symmetry axis, which normally do not show such discrimination. A detailed analysis of the effect is presented, and it is argued that the discrimination observed for s-1 reflects the different ordering of its enantiomers during the pseudorotation cycle.  相似文献   

13.
《Tetrahedron: Asymmetry》2005,16(20):3345-3351
A chiral solvating agent (CSA) based on the chiral selector used in the Whelk-O 1 chiral stationary phase (CSP) was prepared and its scope evaluated. This chiral selector possesses a cleft flanked with aromatic groups and produces upfield chemical shifts for analytes, which are held in this cleft. The enantiomers of each of the Whelk-O 1 resolvable analytes surveyed show non-equivalent 1H NMR spectra at room temperature with the addition of only 0.5 equiv of the CSA. Similar non-equivalence is sometimes noted for enantiomers, which do not resolve on this CSP. In such cases, it is apparent that a hydrogen bond acceptor is required and higher CSA to substrate ratios and/or lower temperatures may be needed if adequate resolution of enantiomeric signals is to be obtained.  相似文献   

14.
We have developed a solid-state NMR method for observing the signals due to 13C spins of a peptide in the close vicinity of 31P and 2H spins in deuterated phospholipid bilayers. The signal intensities in 13C high-resolution NMR spectra directly indicate the depolarization of 1H by 1H-31P and 1H-2H dipolar couplings under multiple-contact cross-polarization. This method was applied to a fully 13C-, 15N-labeled 14-residue peptide, mastoparan-X (MP-X), bound to phospholipid bilayers whose fatty acyl chains are deuterated. The 13C NMR spectra for the depolarization were simulated from the chemical shifts and structure of membrane-bound MP-X previously determined and the distribution of 2H and 31P spins in lipid bilayers. The minimization of RMSD between the simulated and the experimental spectra showed that the amphiphilic alpha-helix of MP-X was located in the interface between the water layer and the hydrophobic domain of the bilayer, with nonpolar residues facing the phosphorus atoms and alkyl chains of the lipids.  相似文献   

15.
An NMR method for discriminating among enantiomers by using a chiral liquid crystalline solution was applied to chiral triazole compounds, uniconazole (1) and diniconazole (2), which exhibit antifungal and plant growth regulating activities. These chiral compounds were dissolved in PBLG (poly-gamma-benzyl-L-glutamate)--CDCl3 chiral liquid crystalline solvent for measurements of 13C NMR. The enantiomeric separations were primarily observed in the signals of aromatic carbons owing to differences in chemical shift anisotropies. The enantiomeric excess (ee) was determined from the integral scale of the separated peaks. The resulting ee values are in fair agreement with the actual values. The extrasplittings due to residual dipolar couplings were also measured using Het2DJ spectra for 1S and R, and 2R, and the results are discussed.  相似文献   

16.
The magnetic field dependence of spatial frequency encoding NMR techniques is addressed through a detailed analysis of 1H NMR spectra acquired under spatial frequency encoding on an oligomeric saccharide sample. In particular, the influence of the strength of the static magnetic field on spectral and spatial resolutions that are key features of this method is investigated. For this purpose, we report the acquisition of correlation experiments implementing broadband homodecoupling or J‐edited spin evolutions, and we discuss the resolution enhancements that are provided by these techniques at two different magnetic fields. We show that performing these experiments at higher field improves the performance of high resolution NMR techniques based on a spatial frequency encoding. The significant resolution enhancements observed on the correlation spectra acquired at very high field make them valuable analytical tools that are suitable for the assignment of 1H chemical shifts and scalar couplings in molecules with highly crowded spectrum such as carbohydrates. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
The scalar coupled proton NMR spectra of many organic molecules possessing more than one phenyl ring are generally complex due to degeneracy of transitions arising from the closely resonating protons, in addition to several short‐ and long‐range couplings experienced by each proton. Analogous situations are generally encountered in derivatives of halogenated benzanilides. Extraction of information from such spectra is challenging and demands the differentiation of spectrum pertaining to each phenyl ring and the simplification of their spectral complexity. The present study employs the blend of independent spin system filtering and the spin‐state selective detection of single quantum (SQ) transitions by the two‐dimensional multiple quantum (MQ) methodology in achieving this goal. The precise values of the scalar couplings of very small magnitudes have been derived by double quantum resolved experiments. The experiments also provide the relative signs of heteronuclear couplings. Studies on four isomers of dihalogenated benzanilides are reported in this work. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
Flexible chiral molecules undergoing fast interconversion (on the NMR time scale) between different conformational enantiomers may yield "average" axial species with enantiotopically related sites. Contrary to the situation observed for rigid axial molecules, signals from these enantiotopic sites in NMR spectra recorded in chiral liquid-crystalline solvents can be resolved. In the present work, we studied the deuterium NMR spectra of tridioxyethylenetriphenylene (compound 4) statistically deuterated to 10% in the flexible side chains and dissolved in chiral and achiral lyotropic liquid crystals based on poly(gamma-benzylglutamate). The fast chair-chair flipping of the side chains in 4 on average renders the molecule axially symmetric ( D 3 h ) with pairs of enantiotopic ethylene deuterons. These deuterons exhibit unusually large enantiodiscrimination. To explain this observation, we first describe how the average symmetry of flexible molecules can be derived from the symmetry of the "frozen" conformers and the nature of the averaging process. The procedure is then applied to 4 and used to analyze the NMR results. It is shown that the large enantiodiscrimination in the present case reflects a large difference in the orientational ordering of the conformational enantiomers participating in the interconversion processes as well as a large geometrical factor due to the special shape of the dioxyethylene side groups. (1)H and (13)C NMR spectra of 4 in the same lyotropic liquid crystalline solvent are analyzed to determine its ordering characteristics. Several related cases are also discussed.  相似文献   

19.
NMR 31P-{1H} spectra of stereoisomeric N - [S - (methylethoxyphosphinyl) - thioglycolyl]valines in solution to reveal association of the molecules, and interaction of the chiral centres. Under fast inter-associate exchange in achiral media, these interactions lead to the following: (i) The chemical shift of the racemic mixture of enantiomers deviates from the shift of the individual species; (ii) the spectra of non-racemic mixtures are doublets; (iii) there are 2n lines in the spectrum of a mixture containing unequal concentrations of stereoisomers with n asymmetric centres. The integrated intensity ratio is equal to the concentration ratio in all cases. The concept of statistically controlled associate diastereomerism (SCAD) is introduced and the respective formalism is given to describe the spectral effects accompanying variations of temperature and concentration. It is also shown applicable to more complicated cases involving ion exchange of chiral fragments between stereoisomers.  相似文献   

20.
Bergman SD  Kol M 《Inorganic chemistry》2005,44(6):1647-1654
Several chiral octahedral complexes of the general formula [Ru(bpy)2 (Lig)][PF6]2 (Lig = a ligand that can participate in pi-stacking interactions such as eilatin, isoeilatin, and tpphz) were synthesized in both the racemic and enantiomerically pure/enriched forms. Nonracemic mixtures of enantiomers of all these complexes exhibit splitting of the 1H NMR spectra (NMR nonequivalence); i.e., each spectrum contains a major and a minor set of peaks. The origin of this phenomenon is attributed to a fast equilibrium between monomers and discrete dimers held together by pi-stacking interactions, and it is observed for a wide range of pi-stacking interaction strengths. The NMR spectrum splitting exhibited by these complexes can be exploited for the evaluation of their enantiomeric excess simply from the integral ratio, without addition of chiral shift reagents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号