首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reactions of tantalum monoxide (TaO) and dioxide (TaO(2)) molecules with methanol in solid neon were investigated by infrared absorption spectroscopy. The ground-state TaO molecule reacted with CH(3)OH in forming the CH(3)OTa(O)H molecule via the hydroxylic hydrogen atom transfer from methanol to the metal center spontaneously on annealing. The observation of the spontaneous reaction is consistent with theoretical predictions that the OH bond activation process is both thermodynamically exothermic and kinetically facile. In contrast, the TaO(2) molecule reacted with CH(3)OH to give primarily the TaO(2)(CH(3)OH) complex, which further rearranged to the CH(3)OTa(O)OH isomer via the hydroxylic hydrogen atom transfer from methanol to one of oxygen atom of metal dioxide upon visible light excitation.  相似文献   

2.
The reactions of molecular tantalum and niobium monoxides and dioxides with water were investigated by matrix isolation infrared spectroscopy. In solid neon, the metal monoxide and dioxide molecules reacted with water to form the MO(H(2)O) and MO(2)(H(2)O) (M = Ta, Nb) complexes spontaneously on annealing. The MO(H(2)O) complexes photochemically rearranged to the more stable HMO(OH) isomers via one hydrogen atom transfer from water to the metal center under visible light excitation. In contrast, the MO(2)(H(2)O) complexes isomerized to the more stable MO(OH)(2) molecules via a hydrogen atom transfer from water to one of the oxygen atoms of metal dioxide upon visible light irradiation. The aforementioned species were identified by isotopic-substituted experiments as well as density functional calculations.  相似文献   

3.
The reactions of niobium and tantalum monoxides and dioxides with methane have been investigated using matrix isolation infrared spectroscopic and theoretical calculations. The niobium and tantalum oxide molecules were prepared by laser evaporation of Nb(2)O(5) and Ta(2)O(5) bulk targets. The niobium monoxide molecule interacted with methane to form the ONb(CH(4)) complex, which was predicted to have C(3)(v)() symmetry with the metal atom coordinated to three hydrogen atoms of the methane molecule. The ONb(CH(4)) complex rearranged to the CH(3)Nb(O)H isomer upon 300 nm < lambda < 580 nm irradiation. The analogous OTa(CH(4)) complex was not observed, but the CH(3)Ta(O)H molecule was produced upon UV irradiation. The niobium and tantalum dioxide molecules reacted with methane to form the O(2)Nb(CH(4)) and O(2)Ta(CH(4)) complexes with C(s)() symmetry, which underwent photochemical rearrangement to the CH(3)Nb(O)OH and CH(3)Ta(O)OH isomers upon ultraviolet irradiation.  相似文献   

4.
Reactions of titanium monoxides with methane have been investigated using matrix isolation infrared spectroscopy and theoretical calculations. Titanium derivatives of several simple oxyhydrocarbons have been prepared and identified. The titanium monoxide molecules prepared by laser evaporation of bulk TiO2 target reacted with methane to form the TiO(CH4) complex in solid argon, which was predicted to have C3v symmetry with the oxygen atom coordinated to one hydrogen atom of the methane molecule. The complex rearranged to the CH3Ti(O)H titano-acetaldehyde molecule upon visible (lambda > 500 nm) irradiation. The titano-acetaldehyde molecule sustained further photochemical rearrangement to the CH2Ti(H)OH titano-vinyl alcohol molecule, which was characterized to be a simple carbene complex involving agostic bonding. The CH2Ti(H)OH molecule reacted with a second methane to form the (CH3)2Ti(H)OH titano-isopropyl alcohol molecule spontaneously on annealing. The (CH3)2Ti(H)OH molecule also can be produced via UV photon-induced rearrangement of the CH3Ti(O)H(CH4) complex.  相似文献   

5.
The photochemistry of the hydrogen-bonded oxotitanium porphyrin-water complex (TiOP-H(2)O) has been explored with electronic-structure calculations. It is shown that intramolecular charge-transfer processes, which are initiated by the excitation of the Soret band of TiOP, accumulate electronic charge on the oxygen atom of TiOP, which in turn abstracts a hydrogen atom from water by an exoenergetic and essentially barrierless hydrogen-transfer reaction, resulting in the TiPOH˙-OH˙ biradical. About 75% of the absorbed photon energy is thus stored as chemical energy in two ground-state radicals. Absorption of a second photon by TiPOH˙ can result in the detachment of the H˙ radical and recovery of the photocatalyzer TiOP. Again, about 75% of the photon energy is stored in the dissociation energy of TiPOH˙. Overall, a water molecule is decomposed into H˙ and OH˙ radicals by the absorption of two visible photons. Exoenergetic radical recombination reactions can yield molecular hydrogen, molecular oxygen or hydrogen peroxide as closed-shell products.  相似文献   

6.
A series of model theoretical calculations are described that suggest a new mechanism for the oxidation step in enzymatic cytochrome P450 hydroxylation of saturated hydrocarbons. A new class of metastable metal hydroperoxides is described that involves the rearrangement of the ground-state metal hydroperoxide to its inverted isomeric form with a hydroxyl radical hydrogen bonded to the metal oxide (MO-OH --> MO....HO). The activation energy for this somersault motion of the FeO-OH group is 20.3 kcal/mol for the P450 model porphyrin iron(III) hydroperoxide [Por(SH)Fe(III)-OOH(-)] to produce the isomeric ferryl oxygen hydrogen bonded to an *OH radical [Por(SH)Fe(III)-O....HO(-)]. This isomeric metastable hydroperoxide, the proposed primary oxidant in the P450 hydroxylation reaction, is calculated to be 17.8 kcal/mol higher in energy than the ground-state iron(III) hydroperoxide Cpd 0. The first step of the proposed mechanism for isobutane oxidation is abstraction of a hydrogen atom from the C-H bond of isobutane by the hydrogen-bonded hydroxyl radical to produce a water molecule strongly hydrogen bonded to anionic Cpd II. The hydroxylation step involves a concerted but nonsynchronous transfer of a hydrogen atom from this newly formed, bound, water molecule to the ferryl oxygen with a concomitant rebound of the incipient *OH radical to the carbon radical of isobutane to produce the C-O bond of the final product, tert-butyl alcohol. The TS for the oxygen rebound step is 2 kcal/mol lower in energy than the hydrogen abstraction TS (DeltaE() = 19.5 kcal/mol). The overall proposed new mechanism is consistent with a lot of the ancillary experimental data for this enzymatic hydroxylation reaction.  相似文献   

7.
Picosecond and femtosecond X-ray absorption spectroscopy is used to probe the changes of the solvent shell structure upon electron abstraction of aqueous iodide using an ultrashort laser pulse. The transient L(1,3) edge EXAFS at 50 ps time delay points to the formation of an expanded water cavity around the iodine atom, in good agreement with classical and quantum mechanical/molecular mechanics (QM/MM) molecular dynamics (MD) simulations. These also show that while the hydrogen atoms pointed toward iodide, they predominantly point toward the bulk solvent in the case of iodine, suggesting a hydrophobic behavior. This is further confirmed by quantum chemical (QC) calculations of I(-)/I(0)(H(2)O)(n=1-4) clusters. The L(1) edge sub-picosecond spectra point to the existence of a transient species that is not present at 50 ps. The QC calculations and the QM/MM MD simulations identify this transient species as an I(0)(OH(2)) complex inside the cavity. The simulations show that upon electron abstraction most of the water molecules move away from iodine, while one comes closer to form the complex that lives for 3-4 ps. This time is governed by the reorganization of the main solvation shell, basically the time it takes for the water molecules to reform an H-bond network. Only then is the interaction with the solvation shell strong enough to pull the water molecule of the complex toward the bulk solvent. Overall, much of the behavior at early times is determined by the reorientational dynamics of water molecules and the formation of a complete network of hydrogen bonded molecules in the first solvation shell.  相似文献   

8.
Mechanisms of formation of the mutagenic product 8-oxoguanine (8OG) due to reactions of guanine with two separate OH* radicals and with H2O2 were investigated at the B3LYP/6-31G, B3LYP/6-311++G, and B3LYP/AUG-cc-pVDZ levels of theory. Single point energy calculations were carried out with the MP2/AUG-cc-pVDZ method employing the optimized geometries at the B3LYP/AUG-cc-pVDZ level. Solvent effect was treated using the PCM and IEF-PCM models. Reactions of two separate OH* radicals and H2O2 with the C2 position of 5-methylimidazole (5MI) were investigated taking 5MI as a model to study reactions at the C8 position of guanine. The addition reaction of an OH* radical at the C8 position of guanine is found to be nearly barrierless while the corresponding adduct is quite stable. The reaction of a second OH* radical at the C8 position of guanine leading to the formation of 8OG complexed with a water molecule can take place according to two different mechanisms, involving two steps each. According to one mechanism, at the first step, 8-hydroxyguanine (8OHG) complexed with a water molecule is formed ,while at the second step, 8OHG is tautomerized to 8OG. In the other mechanism, at the first step, an intermediate complexed (IC) with a water molecule is formed, the five-membered ring of which is open, while at the second step, the five-membered ring is closed and a hydrogen bonded complex of 8OG with a water molecule is formed. The reaction of H2O2 with guanine leading to the formation of 8OG complexed with a water molecule can also take place in accordance with two different mechanisms having two steps each. At the first step of one mechanism, H2O2 is dissociated into two OH* groups that react with guanine to form the same IC as that formed in the reaction with two separate OH* radicals, and the subsequent step of this mechanism is also the same as that of the reaction of guanine with two separate OH* radicals. At the first step of the other mechanism of the reaction of guanine with H2O2, the latter molecule is dissociated into a hydrogen atom and an OOH* group which become bonded to the N7 and C8 atoms of guanine, respectively. At the second step of this mechanism, the OOH* group is dissociated into an oxygen atom and an OH* group, the former becomes bonded to the C8 atom of guanine while the latter abstracts the H8 atom bonded to C8, thus producing 8OG complexed with a water molecule. Solvent effects of the aqueous medium on certain reaction barriers and released energies are appreciable. 5MI works as a satisfactory model for a qualitative study of the reactions of two separate OH* radicals or H2O2 occurring at the C8 position of guanine.  相似文献   

9.
The adsorption of atomic and molecular hydrogen on carbon-doped boron nitride nanotubes is investigated within the ab initio density functional theory. The binding energy of adsorbed hydrogen on carbon-doped boron nitride nanotube is substantially increased when compared with hydrogen on nondoped nanotube. These results are in agreement with experimental results for boron nitride nanotubes (BNNT) where dangling bonds are present. The atomic hydrogen makes a chemical covalent bond with carbon substitution, while a physisorption occurs for the molecular hydrogen. For the H(2) molecule adsorbed on the top of a carbon atom in a boron site (BNNT + C(B)-H(2)), a donor defect level is present, while for the H(2) molecule adsorbed on the top of a carbon atom in a nitrogen site (BNNT + C(N)-H(2)), an acceptor defect level is present. The binding energies of H(2) molecules absorbed on carbon-doped boron nitride nanotubes are in the optimal range to work as a hydrogen storage medium.  相似文献   

10.
The title compound, C17H16O8, yields conformational dimorphs [forms (I) and (II)] at room temperature, separately or concomitantly, depending on the solvent of crystallization. The yield of crystals of form (I) is always much more than that of crystals of form (II). The molecule has one donor –OH group that can make intermolecular O—H...O hydrogen bonds with one of the two acceptor C=O groups, as well as with the hydroxyl O atom; interestingly, each of the options is utilized separately in the dimorphs. The crystal structure of form (I) contains one molecule in the asymmetric unit and is organized as a planar sheet of centrosymmetric dimers via O—H...O hydrogen bonds involving the OH group and the carbonyl O atom of the acryloyl group. In the crystal structure of form (II), which contains two independent molecules in the asymmetric unit, two different O—H...O hydrogen bonds, viz. hydroxyl–hydroxyl and hydroxyl–carbonyl (benzoyl), connect the molecules in a layered arrangement. Another notable feature is the transformation of form (II) to form (I) via melt crystallization upon heating to 411 K. The higher yield of form (I) during crystallization and the thermal transition of form (II) to form (I) suggest that the association in form (I) is more highly favoured than that in form (II), which is valuable in understanding the priorities of molecular aggregation during nucleation of various polymorphs.  相似文献   

11.
Tetrasodium p-sulfonatocalix[4]arene exists as a hydrate with approximately 14 water molecules and has three polymorphic modifications, all of which contain a water molecule in the molecular cavity that is engaged in OH···π interactions. Single-crystal neutron structures are reported for two of these three forms and reveal a "compressed" water molecule with short OH bonds. Partial atomic charges and hardness analysis (PACHA) calculations based on the neutron coordinates give an OH···π interaction energy of 6.9-7.5 kJ mol(-1). The PACHA analysis also reveals the dominance of the charge-assisted hydrogen bonds from the Na(+)-coordinated water molecules. The instability of the crystal towards dehydration can be traced to an uncoordinated lattice water site. The remarkable calixarene-Na(+)-hydrate motif is conserved almost unchanged across all three polymorphs. A single-crystal neutron structure is also reported for pentasodium p-sulfonatocalix[4]arene·12H(2)O, which exhibits an intracavity water molecule that is engaged in both OH···π and OH···O hydrogen bonding. The shorter covalent bond to the hydrogen atom that forms the interaction with the aromatic ring is again apparent.  相似文献   

12.
The reaction in water of Cu(OH)(2) with 2,2'-bipyridine (bipy) and (NH(4))(2)HPO(4) in a 4 : 4 : 2 molar ratio under an inert atmosphere leads to the formation of a tetranuclear copper(II) complex of formula {[(H(2)O)(2)Cu(4)(bipy)(4)(mu(4)-PO(4))(2)(mu(2)-OH)] x 0.5 HPO(4) x 15.5 H(2)O}, 1, with butterfly topology. The structure of the tetranuclear core in 1 consists of four crystallographically unique copper(II) ions in approximate square-pyramidal geometry with each coordinated to a bipy ligand and interacting through two mu(4)-O,O',O'-phosphate bridges. Additional bridging between Cu(3) and Cu(4) is provided by a hydroxide ligand, whereas two water molecules cap the Cu(1) and Cu(2) square pyramids to yield a N(2)O(3) chromophore at each copper atom. Adjacent tetranuclear units align in anti-parallel fashion where proximate metal-bound water molecules interact with each other through both intra- and inter-molecular H-bonding to link two such clusters. These pairs then further associate through pi[...]pi interactions between bipy ligands to form a 2D sheet with neighbouring sheets separated by H-bonded lattice water molecules, which form a 2D H-bonded network. Variable-temperature magnetic susceptibility measurements performed upon 1 reveal net intramolecular ferromagnetic coupling between the copper(II) ions and this is supported and rationalized by a DFT study.  相似文献   

13.
Three novel phosphorus-containing analogues of H(5)DTPA (DTPA = diethylenetriaminepentaacetate) were synthesised (H6L1, H5L2, H5L3). These compounds have a -CH2-P(O)(OH)-R function (R = OH, Ph, CH2NBn2) attached to the central nitrogen atom of the diethylenetriamine backbone. An NMR study reveals that these ligands bind to lanthanide(III) ions in an octadentate fashion through the three nitrogen atoms, a P-O oxygen atom and four carboxylate oxygen atoms. The complexed ligand occurs in several enantiomeric forms due to the chirality of the central nitrogen atom and the phosphorus atom upon coordination. All lanthanide complexes studied have one coordinated water molecule. The residence times (tau(M)298) of the coordinated water molecules in the gadolinium(III) complexes of H6L1 and H5L2 are 88 and 92 ns, respectively, which are close to the optimum. This is particularly important upon covalent and noncovalent attachment of these Gd(3+) chelates to polymers. The relaxivity of the complexes studied is further enhanced by the presence of at least two water molecules in the second coordination sphere of the Gd(3+) ion, which are probably bound to the phosphonate/phosphinate moiety by hydrogen bonds. The complex [Gd(L3)(H2O)](2-) shows strong binding ability to HSA, and the adduct has a relaxivity comparable to MS-325 (40 s(-1) mM(-1) at 40 MHz, 37 degrees C) even though it has a less favourable tau(M) value (685 ns). Transmetallation experiments with Zn(2+) indicate that the complexes have a kinetic stability that is comparable to-or better than-those of [Gd(dtpa)(H2O)](2-) and [Gd(dtpa-bma)(H2O)].  相似文献   

14.
The hydrogen bond energies for 4H-1-benzopyrane-4-thione (BPT) in its ground and two lowest excited singlet electronic states have been determined using ab initio methods. It was shown that the BPT molecule can form, as an acceptor, four relatively strong hydrogen bonds with water molecules, leading to a stable complex in the ground electronic state S(0). The hydrogen bonds involving the sulfur atom from the thiocarbonyl group were found to be stronger than those involving the oxygen atom from the benzopyran moiety. The former hydrogen bonds were predicted to become significantly weaker upon excitation to the S(1) state and, in contrast, stronger upon excitation to the S(2) state. Calculated changes in the hydrogen bond energy due to the S(0)→ S(1) and S(0)→ S(2) excitation are in very good agreement with the experimental values obtained from the absorption solvatochromic study, according to a procedure proposed by us in [E. Krystkowiak, et al., J. Photochem. Photobiol. A: Chem., 2006, 184, 250]. The maxima of absorption spectra of the BPT-water hydrogen-bonded complex, calculated taking into consideration nonspecific solute-solvent interactions, are also in good agreement with the experimental results.  相似文献   

15.
The 1:1 and 2:1 complexes between water and trans- and cis-isomers of nitrous acid have been isolated in argon matrices and studied using FTIR spectroscopy and DFT(B3LYP) calculations with a 6-311++G(2d,2p) basis set. The analysis of the experimental spectra indicate that 1:1 complexes trapped in solid argon involve very strong hydrogen bond in which acid acts as the proton donor and water as the proton acceptor. The perturbed OH stretches are −248, −228 cm−1 red shifted from their free-molecules values in complexes formed by trans- and cis-HONO isomers, respectively. The calculated spectral parameters for the two complexes are in good agreement with experimental data. The calculations also predict stability of two more 1:1 weakly bound complexes formed by each isomer. In these the water acts as the proton donor and one of the two oxygen atoms of the acid as the acceptor. The experimental spectra demonstrate also formation of 2:1 complex between water and trans-HONO isomer in an argon matrix. The performed calculations indicate that the complex involves a seven-membered ring in which OH group of HONO forms very strong hydrogen bond with the oxygen atom of one water molecule and nitrogen atom acts as a weak proton acceptor for the hydrogen atom of the second water molecule of the water dimer. The observed perturbations of the OH stretch of trans-HONO (750 cm−1 red shift) is much larger than that predicted by calculations (556 cm−1 red shift); this difference is attributed to strong solvation effect of argon matrix on very strong hydrogen bond.  相似文献   

16.
The hydrolysis reaction of the diborane molecule in aqueous solution has been studied by a series of Car-Parrinello Molecular Dynamics simulations in the Blue Moon Ensemble. The total reaction has been divided into two parts: one dealing with the breaking of B(2)H(6) molecule and the formation of a BH(4)(-) ion, a H(2)BOH molecule and a H(+) ion; the second leads to the formation of two hydrogen molecules and another H(2)BOH molecule, starting from BH(4)(-), two water molecules and a H(+) ion. The total reaction studied in this work has been B(2)H(6) + 2H(2)O --> 2H(2)BOH + 2H(2). We have described both structurally and electronically the reagents and the products through the radial distribution functions and the Wannier Function Center positions calculations, with attention to the solvent effects on the compounds. The free energy barrier value for the first part of the reaction and a detailed mechanisms for both parts have been reported. An interesting behavior of BH(3) and H(2) molecules in solution has been observed. They form a quite stable three center bond between the electron pair of the hydrogen molecule and the empty orbital of the boron atom in BH(3), which has been described from both a structural and electronic point of view.  相似文献   

17.
An experimental charge density study of a 1 : 1 complex of Cu-cfx (cfx = ciprofloxacin), 1 [Cu(cfx)(H(2)O)(3)]SO4.2H(2)O, has been performed using single-crystal X-ray diffraction data collected at 100 K using conventional Mo Kalpha radiation. Metal-ligand (ML) bonds and hydrogen bonds (HBs) have been analysed using topological analysis of the electron density with the atoms in molecules (AIM) approach. The copper atom binds to two oxygen atoms in one end of the zwitterionic form of the cfx molecule, in addition to forming bonds with three water molecules, forming a square pyramidal coordination geometry. AIM decomposition of the experimental electron density establishes that the copper atom binds more strongly to the cfx molecule than to the water molecules, suggesting that the latter can be detached leaving behind a reactive, water-free Cu-cfx complex available for interaction with e.g. a macromolecular site. AIM analysis of the extensive hydrogen bond pattern reveals that the positively charged N-end of the zwitterionic cfx forms a relatively strong N-H-O hydrogen bond implying that this region of cfx may play an important role in the docking process in the active site. Visualisation and statistics of selected density derived properties on the molecular surface of the isolated cfx molecule vs its metal complexed counterpart points out regions of potential reactivity. The effect of the fluorine atom is to expand the negative region of the electrostatic potential, while the nitrogen end is heavily electropositive and willingly donates to--for molecular docking purposes--relatively strong hydrogen bonding. The Cu atom is highlighted as a potentially highly reactive site which is likely to interact strongly with any given negative ligand.  相似文献   

18.
The reactions of group V metal dioxide molecules with dihydrogen have been studied by matrix isolation infrared spectroscopy. The ground state VO(2) molecule is able to cleave dihydrogen heterolytically and spontaneously in forming the HVO(OH) molecule in solid argon. In contrast, the reaction of VO(2) with dideuterium to form DVO(OD) proceeds only under UV-visible excitation via a weakly bound VO(2)(η(2)-D(2)) complex. Theoretical calculations predict that the dihydrogen cleavage process is thermodynamically exothermic with a small barrier. The niobium and tantalum dioxide molecules react with dihydrogen to give primarily the side-on bonded metal dioxide bis-dihydrogen complexes, NbO(2)(η(2)-H(2))(2) and TaO(2)(η(2)-H(2))(2), which are further transferred to the HNbO(OH) and HTaO(OH) molecules via photoisomerization in combination with H(2) elimination under UV-visible light excitation.  相似文献   

19.
The interactions of water molecule with platinum dioxygen complex and dioxide molecule are investigated by means of matrix isolation infrared spectroscopy and density functional calculations. The platinum atoms reacted with dioxygen to form the previously reported Pt(O2) complex. The Pt(O2) complex reacted with water molecule to give the Pt(O2)–H2O complex, which was characterized to involve hydrogen bonding between one O atom of Pt(O2) and one H atom of H2O (structure A ). Upon visible light irradiation, the hydrogen bonded Pt(O2)???HOH complex rearranged to another Pt(O2)–H2O isomer (structure B ), which involves (O2)Pt???OH2 interaction. The Pt(O2)–H2O complex in structure B can be isomerized to the weakly bound platinum dioxide‐water complex (structure C ) under UV irradiation.  相似文献   

20.
Aqua magnesium phthalocyanine bis(diethylamine) complex was obtained in the crystalline form and its crystal structure was determined by single-crystal X-ray diffraction. The Mg atom is 4 + 1 coordinated by four N isoindole atoms and one O atom. The MgPc moiety is non-planar, the Mg(II) is deviated by 0.492(2) Å from the N4-isoindole plane towards the oxygen atom of water molecule. The arrangement of MgPc(H2O) and diethylamine molecules is determined by O–HN hydrogen bonds and π–π interactions. The complex is stable up to 140 °C. At this temperature the complex loses diethylamine molecules and next at 200 °C loses the water molecule and finally converts into β-MgPc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号