首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fang RQ  Zhang XM 《Inorganic chemistry》2006,45(12):4801-4810
Seven complexes of metal 4,5-dicarboxyimidazole acid (H3dcbi), namely, [Cd(H2dcbi)2(H2O)3].H2O (1.alpha), [Cd(H2dcbi)2(H2O)2].2H2O (1.beta), [Cd(H2dcbi)2(H2O)2].2H2O (1.gamma), [Cd(H2dcbi)2(H2O)2] (2), [Cd(Hdcbi)(H2O)] (3), [Cd5(Hdcbi)2(dcbi)2(H2O)].XH2O (4), [Cd2(Hdcbi)(C2O4)] (5), [Ag5(Hdcbi)2(CN)] (6), and [Mn(Hdcbi)(H2O)] (7), have been hydro(solvo)thermally synthesized by fine control over synthetic conditions such as stoichiometry, solvent, and pH value. X-ray single-crystal structural analyses reveal that they have rich structural chemistry ranging from mononuclear (1), one-dimensional (2), and two-dimensional (3 and 7) to three-dimensional (4-6), among which 1 crystallizes in three types (alpha, beta, and gamma) of polymorphs. Seven coordination modes of H(n)dcbi ranging from monodentate to mu5 have been observed, among which four modes are found first. The coordination geometries of the Cd(II) sites vary from five-coordinate trigonal bipyramid and square pyramid, six-coordinate octahedron to seven-coordinate pentagonal bipyramid. Analyses of the synthetic conditions and structures of the Cd(II) complexes show that the influences of the solvent and the metal-to-ligand molar ratio are very important to the products and coordination modes of H(n)dcbi (n =0, 1, 2). Studies of the coordination modes of H(n)dcbi and the structures of the Cd(II) complexes also reveal that the singly deprotonated H2dcbi generally coordinates in the monodentate imidazole-N or N,O-chelate mode to result in mononuclear structures, the doubly deprotonated Hdcbi coordinates in the mu2, mu3, or mu4 mode to generate one-dimensional or two-dimensional structures, and the triply deprotonated dcbi can coordinate in the mu5 mode to form three-dimensional structures. The cyanide was in situ formed via C-C bond cleavage of acetonitrile during the preparation of 6, which adopts a rare mu4-kC,kC:kN,kN mode to bridge four Ag(I) ions. The microporous three-dimensional framework of 4 is maintained after the removal of the guest molecules. Compounds 1-5 show strong violet emissions with maxima around 380 nm, tentatively attributed to the ligand-centered transition.  相似文献   

2.
Du M  Jiang XJ  Zhao XJ 《Inorganic chemistry》2006,45(10):3998-4006
A series of new metal-organic polymeric complexes, [[Co(bpt)(Htma)(H2O)3].2.25H2O]n (1), [Co(bpt)(Htma)(H2O)]n (2), [Ni(bpt)(Htma)(H2O)]n (3), [Zn(bpt)2(H2tma)2].6H2O (4), [[Cd(bpt)(Htma)(H2O)].(C2H5OH)(H2O)1.5]n (5), and [[Cd(bpt)(Htma)(H2O)2].5.5H2O]n (6), was prepared from solution reactions of 4-amino-3,5-bis(4-pyridyl)-1,2,4-triazole (bpt) and trimesic acid (H3tma) with different metal salts under diverse conditions. All these compounds were structurally determined by X-ray single-crystal diffraction, and the bulk new materials were further identified by X-ray powder diffraction. Complexes 1 and 6 show 1-D zigzag or linear Htma-bridged polymeric chains, with the terminal bpt ligands as pendants, which are extended to 2-D hydrogen-bonded arrays with 4.8(2) or (6,3) network topology. Coordination polymers 2 and 3, in which the 2-D corrugated metal-organic frameworks make the interdigitated 3-D packing, are isostructural. Complex 4 has a mononuclear structure, and its subunits are hydrogen-bonded to each other to give a 2-D grid-like net. For complex 5, the Cd(II) centers are linked by bpt/Htma ligands to form a 2-D (4,4) coordination layer, and these layers are interdigitated in pairs. Notably, secondary noncovalent forces, such as hydrogen bonds, play an important role in extending and stabilizing these structural topologies. Interestingly, distinct products are obtained for Co(II) (1 and 2) and Cd(II) (5 and 6) under ambient or hydrothermal conditions; however, for Ni(II) and Zn(II), single products, 3 and 4, are generated. The thermal stabilities of 1-6 were studied by thermogravimetric analysis of mass loss. The desorption/adsorption properties of the porous material 5 are also discussed. Solid-state luminescent spectra of the Zn(II) and Cd(II) complexes, 4-6, indicate intense fluorescent emissions at ca. 380 nm.  相似文献   

3.
Rational self-assembly of a long V-shaped 3,3',4,4'-benzophenonetetracarboxylate (bptc) ligand and metal salts in the presence of linear bidentate ligand yield a series of novel pillared helical-layer complexes, namely, [Cu2(bptc)(bpy)2] (1), [M3(Hbptc)2(bpy)3(H2O)4].2 H2O (M = Fe(2) and Ni(3)), [Co2(bptc)(bpy)(H2O)].0.5 bpy (4), [Cd2(bptc)(bpy)(H2O)2].H2O (5), [Mn2(bptc)(bpy)1.5(H2O)3] (6) and [M2(bptc)(bpy)0.5(H2O)5].0.5 bpy (M = Mn(7), Mg(8) and Co(9), bpy=4,4'-bipyridine). Their structures were determined by single-crystal X-ray diffraction analyses and further characterized by elemental analyses, IR spectra, and thermogravimetric (TG) analyses. The structure of 1 consists of two types of chiral layers, one left-handed and the other right-handed, which are connected by bpy pillars to generate a novel 3D open framework featuring four distinct helical chains. Compounds 2 and 3 are isostructural and feature 3D structures formed from the interconnection of arm-shaped helical layers with bpy pillars. Compound 4 is a pillared helical double-layer complex containing four different types of helices, among which the nine-fold interwoven helices constructed from triple-stranded helical motifs are unprecedented. Compound 5 exhibits a novel 3D covalent framework which features nanosized tubular channels. These channels are built from helical layers pillared by bptc ligands. The structure of 6 is constructed from {Mn(bptc)(H2O)}n2n- layers, which consist of left- and right-handed helical chains, pillared by [Mn2(bpy)3(H2O)4]4+ complexes into a 3D framework. To the best of our knowledge, compounds 1-6 are the first examples of pillared helical-layer coordination polymers. Compounds 7-9 are isostructural and exhibit interesting 2D helical double-layer structures, which are constructed from {M(bptc)(H2O)2}n2n- ribbons cross-linked by [M2(bpy)(H2O)6]4+ complexes. Furthermore, the 3D supramolecular structures of 7-9 are similar to the 3D structure of 6, and the 2D structure of 7 can be transformed into the 3D structure of 6 at higher reaction temperature. By inspection of the structures of 1-9, it is believed that the V-shaped bptc ligand and V-shaped phthalic group of the bptc ligand are important for the formation of the helical structures. The magnetic behavior of compounds 1, 2, 4, 6, and 9 was studied and indicated the existence of antiferromagnetic interactions. Moreover, compound 5 shows intense photoluminescence at room temperature.  相似文献   

4.
Density functional theory calculations on complexes of 4C1, 1C4 and 2SO ring conformations of methyl beta-D-xylopyranoside 1 with divalent metal cations, M = Mg2+, Ca2+, Zn2+, and Cd2+, are presented. Bridging and pendant cationic, [M(H2O)41]2+ and [M(H2O)(5)1]2+, as well as neutral complexes, [M(OH)2(H2O)(2)1] and [M(OH)2(H2O)(3)1], and neutral complexes involving a doubly deprotonated sugar, [M(H2O)(4)1(2-)], are considered. In aqueous and chloroform solution the stability of cationic and pendant neutral complexes is greatly diminished compared with gas-phase results. In contrast, bridging neutral complexes [M(OH)2(H2O)(2)1] and those of type [M(H2O)(4)1(2-)], are stabilized with increasing solvent polarity. Solvation also profoundly influences the preferred binding position and ring conformation. Compared with complexes of bare metal cations, additional ligands, e.g., H2O or OH-, significantly reduce the stability of 1C4 ring complexes. Irrespective of the cation, the most stable structure of bridging complexes [M(H2O)(4)1]2+ results from coordination of the metal to O3 and O4 of methyl beta-D-xylopyranoside in its 4C1 ring conformation.  相似文献   

5.
Meng X  Song Y  Hou H  Han H  Xiao B  Fan Y  Zhu Y 《Inorganic chemistry》2004,43(11):3528-3536
Four novel cadmium-btx (btx = 1,4-bis(triazol-1-ylmethyl)benzene) coordination polymers [Cd(btx)(2)(NO(3))(2)](n)(1), [Cd(btx)(2)Cl(2)](n)(2), [Cd(btx)(SO(4))(H(2)O)(2)](n)(3), and [Cd(btx)(S(2)O(7))(H(2)O)](n)(4) have been prepared by hydrothermal reaction (140 or 180 degrees C) and characterized. Both 1 and 2 have two-dimensional rhombohedral grid structures, 3 possesses a two-dimensional rectangular grid structure, and 4 displays a three-dimensional framework, which is formed by btx bridging parallel layers. To the author's best knowledge, polymer 4 is the first Cd(II) polymer in which the Cd(II) ion is eight-coordinated in a hexagonal bipyrimidal geometry. In addition, we studied the effects of temperature on the hydrothermal reaction system of btx and CdSO(4) and found that different products can be obtained at different temperatures. Furthermore, polymer 3 possesses a very strong third-order NLO absorptive effect with an alpha(2) value of 1.15 x 10(-)(9) m W(-1). Polymers 2-4 display strong fluorescent emissions in the solid state at room temperature. The DTA and TGA results of the four polymers are in agreement with the crystal structures.  相似文献   

6.
Reactions of the arene-linked bis(pyrazolyl)methane ligands m-bis[bis(1-pyrazolyl)methyl]benzene (m-[CH(pz)2]2C6H4, Lm) and 1,3,5-tris[bis(1-pyrazolyl)methyl]benzene (1,3,5-[CH(pz)2]3C6H3, L3) with BF4- salts of divalent iron, zinc, and cadmium result in fluoride abstraction from BF4- and formation of fluoride-bridged metallacyclic complexes. Treatment of Fe(BF4)2.6H2O and Zn(BF4)2.5H2O with Lm leads to the complexes [Fe2(mu-F)(mu-Lm)2](BF4)3 (1) and [Zn2(mu-F)(mu-Lm)2](BF4)3 (2), in which a single fluoride ligand and two Lm molecules bridge the two metal centers. The reaction of [Cd2(thf)5](BF4)4 with Lm results in the complex [Cd2(mu-F)2(mu-Lm)2](BF4)2 (3), which contains dimeric cations in which two fluoride and two Lm ligands bridge the cadmium centers. Equimolar amounts of the tritopic ligand L3 and Zn(BF4)2.5H2O react to give the related monofluoride-bridged complex [Zn2(mu-F)(mu-L3)2](BF4)3 (4), in which one bis(pyrazolyl)methane unit on each ligand remains unbound. NMR spectroscopic studies show that in acetonitrile the zinc metallacycles observed in the solid-state remain intact in solution.  相似文献   

7.
Neutral zinc, cadmium, mercury(II), and ethylmercury(II) complexes of a series of phosphinothiol ligands, PhnP(C6H3(SH-2)(R-3))3-n (n = 1, 2; R = H, SiMe3) have been synthesized and characterized by IR and NMR ((1)H, (13)C, and (31)P) spectroscopy, FAB mass spectrometry, and X-ray structural analysis. The compounds [Zn{PhP(C6H4S-2)2}] (1) and [Cd{Ph2PC6H4S-2}2] (2) have been synthesized by electrochemical oxidation of anodic metal (zinc or cadmium) in an acetonitrile solution of the appropriate ligand. The presence of pyridine in the electrolytic cell affords the mixed complexes [Zn{PhP(C6H4S-2)2}(py)] (3) and [Cd{PhP(C6H4S-2)2}(py)] (4). [Hg{Ph2PC6H4S-2}2] (5) and [Hg{Ph2PC6H3(S-2)(SiMe3-3)}2] (6) were obtained by the addition of the appropriate ligand to a solution of mercury(II) acetate in methanol in the presence of triethylamine. [EtHg{Ph2PC6H4S-2}] (7), [EtHg{Ph2P(O)C6H3(S-2)(SiMe3-3)}] (8), [{EtHg}2{PhP(C6H4S-2)2}] (9), and [{EtHg}2{PhP(C6H3(S-2)(SiMe3-3))2}] (10) were obtained by reaction of ethylmercury(II) chloride with the corresponding ligand in methanol. In addition, in the reactions of EtHgCl with Ph2PC6H4SH-2 and with the potentially tridentate ligand PhP(C6H3(SH-2)(SiMe3-3)) 2, cleavage of the Hg-C bond was observed with the formation of [Hg{Ph2PC6H4S-2}2] (5) and [Hg(EtHg) 2{PhP(O)(C6H3(S-2)(SiMe3-3))2}2] (11), respectively, and the corresponding hydrocarbon. The crystal structures of [Zn3{PhP(C6H4S-2)2}2{PhP(O)(C6H4S-2)2}] (1*), [Cd2{Ph2PC6H4S-2}3{Ph2P(O)C6H4S-2}] (2*), 3, 5, 6, [EtHg{Ph2P(O)C6H4S-2}] (7*), 8, 9, [{EtHg}2{PhP(O)(C6H3(S-2)(SiMe3-3))2}] (10*), and 11 are discussed. The molecular structures of 1, 2, 4, 7, and 10 have also been studied by means of density functional theory (DFT) calculations.  相似文献   

8.
The reaction of 4, 7-phenanthroline (1) with aqueous transitionmetal complexes [Mn(H2O)6][NO3]2, [Co(H2O)6][NO3]2, [Ni(H2O)6[NO3]2, [Mn(H2O)6][ClO4]2, and [Co(H2O)6][ClO4]2 does not produce coordination complexes between these metal cations and the N-donor ligand as expected. Instead, supramolecular hydrogenbonded networks are formed between the nitrogen donor atoms of 4, 7-phenanthroline and the OH groups of coordinated water molecules: M-O-H...N interactions. This motif of second-sphere coordination for 1 can be exploited as a tool for crystal engineering. As a demonstration of the generality of this new interaction as a supramolecular building block, five X-ray crystal structures are reported that utilise this hydrogen bonding scheme; [Co(H2O)4(NO3)2].(1)2 (2a), [Co(MeCN)2(H2O)4][ClO4]2.(1)2 (2b), [Ni(H2O)4(NO3)2].(1)2 (3a), [Mn(H2O)4(NO3)2].(1)2 (4a), and [Mn(H2O)6][ClO4]2.(1)(4).4H2O (4b). Each network involves complete saturation of the hydrogen-bond donor sets between the aqua complex and 1 using primarily M-O-H...N(1) and M-O-H...O(anion), interactions. Thermogravimteric analysis shows these materials to have stabililities similar to coordination polymers involving metal-ligand bonds; this demonstrates that second-sphere hydrogen bonding has potential for the construction of polymeric metal-containing materials.  相似文献   

9.
Fu R  Hu S  Wu X 《Inorganic chemistry》2007,46(23):9630-9640
Fluorescent whitener (4,4'-bis(2-sulfonatostiryl)biphenyl) was incorporated with M/4,4'-bipy (M=Cd, Co; 4,4'-bipy=4,4'-bipyridine) 2D frameworks, Mn/4,4'-bipyH fragment, and the [Zn2(Im)2(ImH)4]2+ (ImH=imidazole) chain under hydrothermal conditions to obtain seven new coordination polymers: [Cd(4,4'-bipy)(L)(H2O)2] (1), [Co(4,4'-bipy)2(L)].2H2O (2), [Co(4,4'-bipy)2(H2O)2](4,4'-bipy)(L).2H2O (3), [Mn(4,4'-bipyH)2(L)2(H2O)2].4H2O (4), and [Zn2(Im)2(ImH)4](L) (5). Their structures were determined by single-crystal X-ray diffraction. In 1, binuclear [Cd2] units are bridged by 4,4'-bipys into a 2D cationic framework, which is further penetrated by L anions. 2 has an organic-inorganic hybrid layer consisting of [Co(4,4'-bipy)2] squarelike motifs and L anions. 3 features a pcu-like 3D cationic framework with the inclusion of L anions. In 4, the [Mn(4,4'-bipyH)2(H2O)2]4+ cationic fragment is sandwiched by L anions into a sandwichlike hybrid layer. 5 exhibits a 3D honeycomb-like structure with each nanotube encapsulating two parallel L anionic chains. TGA and PXRD indicate solids 1, 4, and 5 are thermally stable up to 280, 200, and 250 degrees C under an air atmosphere, respectively. 1 has bright blue-green luminescence with a peak maximum band at about 470 nm. 4 exhibits tunable emission between dark-red and weak-green under the excitation of 500 and 280 nm, respectively. 5 displays a bright blue-green emission with a peak band at 454 nm and a shoulder peak at 473 nm. It is attractive that the luminescent properties of solids 1, 4, and 5 are almost retained after heat treatment at 200, 200, and 250 degrees C for 2 h under an air atmosphere, respectively.  相似文献   

10.
The reactions of Cd2+ and Zn2+ with the pyridine-arm isoindoline ligand 4'-MeLH = 1,3-bis[2-(4-methylpyridyl)imino]isoindoline produced the series of octahedrally coordinated complexes M(4'-MeL)2, [M(4'-MeLH)2]2+, and [M(4'-MeL)(4'-MeLH)]+. The complexes M(4'-MeL)2 resulted from reactions of the respective metal perchlorates with deprotonated ligand, whereas the complexes [M(4'-MeLH)2](ClO4)2 resulted from reactions with ligand in the absence of added base. The mixed-ligand complexes [M(4'-MeL)(4'-MeLH)]+ were generated in solution by reactions of equimolar quantities of M(4'-MeL)2 and [M(4'-MeLH)2]2+. Whereas [Cd(4'-MeL)(4'-MeLH)]+ is stable in solution, [Zn(4'-MeL)(4'-MeLH)]+ converts to and establishes equilibrium with the tetrahedrally coordinated, trinuclear complex [Zn3(4'-MeL)4]2+. The complexes Cd(4'-MeL)2 (1), Zn(4'-MeL)2 (2), and [Cd(4'-MeL)(4'-MeLH)]ClO4 (5) were characterized by single-crystal X-ray diffraction, with the latter complex being shown to contain 4'-MeLH coordinated as a protonated iminium zwitterionic ligand. The [M(4'-MeLH)2]2+ and [M(4'-MeL)(4'-MeLH)]+ complexes are tautomeric in solution because of the shuttling of the iminium protons between imine N atoms. The rate of prototropic tautomerism in [Cd(4'-MeLH)2]+ was followed by 1H NMR spectroscopy. Over the temperature range 276-312 K, a linear Eyring plot with the activation parameters DeltaG++ = 16.0 +/- 0.1 kcal/mol, DeltaH++ = 2.9 +/- 0.1 kcal/mol, and DeltaS++ = -44.0 +/- 0.3 cal/mol.K was obtained.  相似文献   

11.
Dai JC  Wu XT  Fu ZY  Cui CP  Hu SM  Du WX  Wu LM  Zhang HH  Sun RQ 《Inorganic chemistry》2002,41(6):1391-1396
Three novel complexes, Cd3tma2*13H2O (1), Cd3tma2*dabco*2H2O (2), and Cd3Htma3*8H2O (3) (tma = trimesate), of cadmium(II)-trimesate coordination polymers are obtained from hydrothermal reaction. 1 (C18H32O25Cd3) crystallizes in the monoclinic C2/c space group [a = 18.985(2) A, b = 7.3872(6) A, c = 20.432(2) A, = 97.1660(10), and Z = 4]. 2 (C24H22N2O14Cd3) crystallizes in the monoclinic P2(1)/c space group [a = 10.1323(2) A, b = 19.5669(5) A, c = 13.15880(10) A, = 108.9810(10), and Z = 4]. 3 (C27H28O26Cd3) belongs to the trigonal P31c space group [a = 15.7547(3) A, b = 15.7547(3) A, c = 7.93160(10) A, and Z = 2]. The Cd(II) centers in the three complexes are bridged by tma ligands in the coordination fashion of unidentate, bridging unidentate, bidentate, chelating bis-bidentate, chelating/bridging bis-bidentate, or chelating/bridging bidentate to form the T-shaped molecular bilayer motif for 1, chicken-wire-like motif for 2, and honeycomb-like porous structure for 3, respectively, in which the T-shaped molecular bilayer motif and chicken-wire-like motif are further interlinked in interdigitating or alternating fashion to construct the different coordination architectures. These three complexes exhibit strong fluorescent emission bands at 355 nm (lambda(ex) = 220 nm) for 1, 437 nm (lambda(ex) = 365 nm) for 2, and 353 nm (lambda(ex) = 218 nm) for 3 in the solid state at room temperature.  相似文献   

12.
The syntheses and crystal structures of a mononuclear cadmium complex and five novel coordination polymers based on 1,2,4-triazolyl benzoates are presented. The compounds (∞)(3)[Cd(H-Me-trz-pba)(2)] (2), (∞)(3)[Cd(Me-3py-trz-pba)(2)] (4), and (∞)(3)[Zn(H-Me-trz-pba)(2)] (6) can be obtained by solvothermal synthesis or simple heating of the starting materials in appropriate solvents, and are also accessible by thermal conversion of the complex [Cd(H-Me-trz-pba)(2)(H(2)O)(4)] (1), the one-dimensional (1D) coordination polymer (∞)(1)[Cd(Me-3py-trz-pba)(2)(H(2)O)(2)]·H(2)O (3), and the porous three-dimensional (3D) framework (∞)(3)[Zn(H-Me-trz-pba)2]·4H(2)O (5), respectively. The driving force for these conversions is the formation of thermally stable, nonporous, crystalline 3D coordination polymers. The structural transformations are accompanied by the loss of water and reveal significant changes of the coordination spheres of the metal ions caused by a rearrangement of the triazolyl benzoate ligands. Compounds 2, 4, 5, and 6 exhibit 4- and 5-fold interpenetration of diamondoid networks (dia) and are thermally stable up to 380 °C.  相似文献   

13.
Under hydrothermal (solvothermal) reaction conditions chiral compounds 1, 2, and 3 and one acentric compound 4 were obtained by the reaction of Zn(2+) or Cd(2+) with racemic 3-(3-pyridyl)-3-aminopropionic acid (rac-HPAPA). Compounds 1 and 2 crystallized in chiral space group P2(1)2(1)2(1). At 105 degrees C, racemic 3-pyridyl-3-aminopropionic acid (rac-HPAPA) reacted with Zn(ClO4)(2).6 H2O and dehydrogenated in situ to form the first chiral coordination polymer [Zn[(E)-3-C(5)H4N-C(NH2)=CH-COO]]ClO4 (1) with a beta-dehydroamino acid. Beyond 120 degrees C, the reaction of rac-HPAPA with Zn(ClO4)(2).6 H2O deaminates in situ to form chiral coordination polymer [Zn[(E)-3-C5H4N-CH=CH-COO](OH)] (2). At relatively low temperatures (70 degrees C), the solvothermal reaction of Zn(NO3)(2).6 H2O with rac-HPAPA in methanol does not lead to any change in the ligand and results in the formation of a chiral (P2(1)2(1)2(1)) coordination polymer [Zn(papa)(NO3)] (3). The same reaction of Cd(ClO4)(2).6 H2O with HPAPA also does not lead to any change in ligand and results in the formation of noncentric (Cc) coordination polymer [Cd(papa)(Hpapa)]ClO4.H2O (4). The network topology of both 1 and 3 is 10,3a, while 2 has a diamondoid-like (KDP-like, KDP=potassium dideuterophosphate) network. Particularly interesting from a topological perspective is that 4 has an unprecedented three-dimensional network. Compounds 1, 2, 3, and 4 are all second harmonic generation (SHG) active with 1 exhibiting the strongest response, while only 4 also displays good ferroelectric properties.  相似文献   

14.
Open-framework cadmium succinates, [CN(3)H(6)](2)[Cd(2)(C(4)H(4)O(4))(Cl)(2)], I; [CN(3)H(6)](2)[Cd(C(4)H(4)O(4))(2)], II; Cd(2)(C(4)H(4)O(4))(2)(C(4)N(2)H(8))(H(2)O)(3), III; [C(4)N(2)H(12)][Cd(2)(C(4)H(4)O(4))(3)].4H(2)O, IV; Cd(C(4)H(4)O(4))(H(2)O)(2), V; and Cd(3)(C(4)H(4)O(4))(2)(OH)(2)], VI, of different dimensionalities have been synthesized by hydrothermal procedure by employing two different strategies, one involving the reaction of Cd salts with organic-amine succinates and the other involving the hydrothermal reaction of Cd salts with a mixture of succinic acid and the organic amine. While the latter procedure yields structures without any amine in them, the former gives rise to amine templated cadmium succinates with open architectures. By employing guanidinium succinate we have obtained I and II, and with piperazinium succinate we obtained III and IV. Of these I has a one-dimensional chain structure, IV has a layered structure, and II and III have three-dimensional architectures. The two cadmium succinates without incorporation of amine, V and VI, possess layered and three-dimensional structures, respectively. The three-dimensional structures II and III exhibit interpenetration similar to that in diamondoid and alpha-polonium type structures, respectively.  相似文献   

15.
A family of polymeric coordination networks based on meta-pyridylphosphonate bridging ligands has been synthesized and characterized by single-crystal X-ray crystallography. Compounds [M(2)(L-Et)(4)(mu-H(2)O)] (M = Mn, 1; Co, 2; Ni, 3; L-Et = ethyl-4-[2-(3-pyridyl)ethenyl]phenylphosphonate) were obtained by hydro(solvo)thermal reactions between diethyl-4-[2-(3-pyridyl)ethenyl]phenylphosphonate (L-Et(2)) and corresponding metal salts, while [Cd(L-H)(2)], 4 (L-H is monoprotonated 4-[2-(3-pyridyl)ethenyl]phenylphosphonate), was obtained by a hydro(solvo)thermal reaction between (L-H(2)).HBr and Cd(CF(3)SO(3))(2).6H(2)O. Compounds 1-3 are isostructural and crystallize in noncentrosymmetric space group Fdd2, and they adopt a complicated 3D framework structure composed of [M(2)(L-Et)(4)(mu-H(2)O)] building units, while compound 4 adopts a centrosymmetric 3D network structure resulted from linking 1D sinusoidal cadmium phosphate chains with L-H bridging ligands. Consistent with their polar structures, compounds 1-3 exhibit powder second harmonic generation signals larger than that of potassium dihydrogen phosphate.  相似文献   

16.
A series of mono- and bis(2-pyridyl)-arylmethanone ligands were prepared by utilizing the reaction between either bromobenzonitrile or dicyanobenzene and 2-lithiopyridine in either a 1:1 or a 2:1 mol ratio, respectively. They react with [Ru(bpy)2(EtOH)2][PF6]2 to yield the new complexes [N,O-PhC(O)(2-py)Ru(bpy)2][PF6]2 (6), [p-N,O-BrC6H4C-(O)(2-py)Ru(bpy)2][PF6]2 (7), [m-N,O-BrC6H4C(O)(2-py)Ru(bpy)2][PF6]2 (8), [p-[N,O-C(O)(2-py)2Ru(bpy)2]2(C6H4)]-[PF6]4 (9), and [m-[N,O-C(O)(2-py)2Ru(bpy)2]2(C6H4)][PF6]4 (10). The solid state structures of 6 and 7 show that the octahedral cations are arranged in sinusoidal chains by pi-pi stacking and CH-pi interactions between bipyridyl groups. Substitution of bromine for hydrogen at the para position of the aryl group in 7 causes the aryl group to become involved in pi-pi stacking interactions that organize the chains into a sheet structure. The complicated 1H and 13C NMR spectra of the complexes have been fully assigned using 2D methods. The optical spectra show two absorption maxima near 434 and 564 nm due to MLCT transitions. The compounds were found to be nonluminescent. Electrochemical data acquired for CH3CN solutions of the bimetallic derivatives indicate that there is no electronic communication between metal centers mediated either through space or through ligand orbitals. Crystallographic information: 6.0.5CH3CN is monoclinic, C2/c, a = 24.3474(11) A, b = 13.7721(6) A, c = 21.3184(10) A, beta = 103.9920(10) degrees, Z = 8; 7 is monoclinic, P2(1)/c, a = 10.6639(11) A, b = 23.690(3) A, c = 13.7634(14) A, beta = 91.440(2) degrees, Z = 4.  相似文献   

17.
The reaction of metal ions, flexible aliphatic dicarboxylates and rigid bidentate linear ligands under mild conditions in water afford four novel metal-organic coordination polymers, [Cd(mu-mal)(mu-pyz)(0.5)(H(2)O)](n) 1 (mal = malonate dianion, pyz = pyrazine), [Cd(2)(mu-suc)(2)(mu-pyz)(H(2)O)(2)](n) 2 (suc = succinate dianion), and ([M(mu-bipy)(H(2)O)4][suc].4H(2)O)(n)(M = Co, 3, M = Zn, 4, bipy = 4,4'-bipyridine). The molecular structures of 1-4 have been established by single-crystal X-ray crystallography. 1 is a 3D network being composed of layers of octahedrally coordinated Cd atoms bridged by malonate anions in syn-anti configurations within the layers and pyz molecules between layers. Unlike that in 1, each Cd atom in 2 displays uncommon pentagonal-bipyramidal geometry to form 2D infinite grid sheets with square grid dimensions of ca. 7.936 x 7.936 [Angstrom]. Both 3 and 4 exhibit 1D linear -M-bipy-M-bipy- chain polymers, and these chains were packed as ...ABCABC... layered structures. The bridging succinate ligands in 2 adopt the syn-anti mode with a torsion angle of 60.8(7) degrees, while the solvated succinate ligands in 3 and 4 adopt the anti-anti mode with a torsion angle of 180.0 degrees. To our knowledge, compound 2 represents the first example of flexible self-assembled succinate-pyrazine mixed bridging ligand coordination network. 3 and 4 are the first two cases of succinate-bipy polymers with non-coordinated succinate. The magnetic behavior for 3 was studied in the temperature range of 5-300 K. The result indicates the occurrence of a weak antiferromagnetic coupling between the cobalt(II) ions.  相似文献   

18.
Reaction of mono- and dilithiated thiophene (a), bithiophene (b) and 2,5-dibromothiophene (c) with [Re(2)(CO)(10)] afforded, after subsequent alkylation with triethyloxonium tetrafluoroborate, tetra- and binuclear Fischer carbene complexes, [Re(2)(CO)(9){C(OEt){C(4)H(2)S}(n)X}], n = 1, X = H (1a); n = 2, X = H (1b); n = 1, X = Br (1c); n = 1, X = C(OEt)Re(2)(CO)(9), (2a); n = 2, X = C(OEt)Re(2)(CO)(9) (2b), as major products. The dirhenium acylate intermediates from this reaction not only gave the expected novel ethoxycarbene complexes with alkylation but after rhenium-rhenium bond breaking afforded a number of minor products. The (1)H NMR spectrum of the crude reaction mixture revealed the formation of four metal hydride complexes and aldehydes. Protonation with HBF(4) instead of alkylation with Et(3)OBF(4) significantly increased the yields of the hydride complexes, which enabled the positive identification of three of these complexes. In addition to the known compounds [Re(CO)(5)H] and [Re(3)(CO)(14)H] (3), a unique complex displaying a hydroxycarbene fragment connected to an acyl fragment via an O-H···O hydrogen bond and a Re···H···Re bond linking the two Re centers, [(μ-H){Re(CO)(4)C(OH){C(4)H(2)S}(n)H}{Re(CO)(4)C(O){C(4)H(2)S}(n)H}], n = 1 (4a) or n = 2 (4b), were isolated. The formation of thiophene aldehydes, H{C(O)}(m){C(4)H(2)S}(n)C(O)H (m = 0 or 1 and n = 1 or 2), were observed and the novel monocarbene complexes with terminal aldehyde groups, [Re(2)(CO)(9){C(OEt){C(4)H(2)S}(n)C(O)H}], n = 1 (5a) and n = 2 (5b) could be isolated. A higher yield of 5b was obtained after stirring crystals of 2b in wet THF. The crystal structures of 1a, 2a, 4a and 5b are reported.  相似文献   

19.
在溶剂热反应条件下, 用预先合成的乳酸衍生物(R)-H2CBA和(S)-H2CBA分别与含氮辅助配体(E)-1,2-二(4-吡啶基)乙烯(DPEE)和1,4-二(1H-咪唑-1-基)苯(1,4-DIB)组合, 制备出2对不同结构的单一手性配位聚合物[Cd2((R)-CBA)2(DPEE)(H2O)2]n(1-D), [Cd2((S)- CBA)2(DPEE)(H2O)2]n(1-L), [Cd((R)-CBA)(1,4-DIB)]·H2O(2-D)和[Cd((S)-CBA)(1,4-DIB)]·H2O(2-L). 其中1-D和1-L是由梯形Cd-CBA链和DPEE配体连接成的二维框架结构; 而2-D和2-L是三维超分子框架结构, 包含3种不同类型的对映手性螺旋链. 对上述化合物进行了粉末X射线衍射、 热重分析和圆二色谱分析, 并对其荧光性质进行了讨论.  相似文献   

20.
The reaction of (NBu(4))(2)[Pt(C triple bond CPh)(4)] with Cd(ClO(4))(2).6H(2)O in a 1:1 molar ratio yields a white solid [PtCd(C triple bond CPh)(4)](n) 1 (75% yield) together with yellow crystals of a very unusual decanuclear platinum-cadmium cluster [Pt(4)Cd(6)(C triple bond CPh)(4)(mu-C triple bond CPh)(12)(mu(3)-OH)(4)] 2 in low yield. Slow diffusion of acetonic solutions of the starting materials under aerobic conditions only produces crystals of 2 which have been shown by an X-ray analysis to be composed of a big hexanuclear cation [Cd(6)(mu(3)-OH)(4)](8+) and four [Pt(C triple bond CPh)(4)](2-) anions, held together by Pt.Cd and pi.Cd acetylide interactions. On the other hand, treatment of the insoluble product 1 with 1 equiv of NBu(4)X yields tetranuclear mixed-metal soluble complexes (NBu(4))(2)[[Pt(mu-C triple bond CPh)(4)](2)(CdX)(2)] (X = Cl A, Br 3, CN 4), which contain two platinate fragments connected by two CdX units through Pt.Cd and mainly Cd.C(alpha) interactions. All complexes are strongly emissive in the solid state at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号