首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For an open set Θ of k, let \s{Pθ: θ Θ\s} be a parametric family of probabilities modeling the distribution of i.i.d. random variables X1,…, Xn. Suppose Xi's are subject to right censoring and one is only able to observe the pairs (min(Xi, Yi), [Xi Yi]), i = 1,…, n, where [A] denotes the indicator function of the event A, Y1,…, Yn are independent of X1,…, Xn and i.i.d. with unknown distribution Q0. This paper investigates estimation of the value θ that gives a fitted member of the parametric family when the distributions of X1 and Y1 are subject to contamination. The constructed estimators are adaptive under the semi-parametric model and robust against small contaminations: they achieve a lower bound for the local asymptotic minimax risk over Hellinger neighborhoods, in the Hájel—Le Cam sense. The work relies on Beran (1981). The construction employs some results on product-limit estimators.  相似文献   

2.
Let S=(a1,...,am; b1,...,bn), where a1,...,am and b1,...,bn are two nonincreasing sequences of nonnegative integers. The pair S=(a1,...,am; b1,...,bn) is said to be a bigraphic pair if there is a simple bipartite graph G=(XY, E) such that a1,...,am and b1,...,bn are the degrees of the vertices in X and Y, respectively. Let Z3 be the cyclic group of order 3. Define σ(Z3, m, n) to be the minimum integer k such that every bigraphic pair S=(a1,...,am; b1,...,bn) with am, bn ≥ 2 and σ(S)=a1 +... + amk has a Z3-connected realization. For n=m, Yin[Discrete Math., 339, 2018-2026 (2016)] recently determined the values of σ(Z3, m, m) for m ≥ 4. In this paper, we completely determine the values of σ(Z3, m, n) for m n ≥ 4.  相似文献   

3.
For a 1-dependent stationary sequence {Xn} we first show that if u satisfies p1=p1(u)=P(X1>u)0.025 and n>3 is such that 88np131, then
P{max(X1,…,Xn)u}=ν·μn+O{p13(88n(1+124np13)+561)}, n>3,
where
ν=1−p2+2p3−3p4+p12+6p22−6p1p2,μ=(1+p1p2+p3p4+2p12+3p22−5p1p2)−1
with
pk=pk(u)=P{min(X1,…,Xk)>u}, k1
and
|O(x)||x|.
From this result we deduce, for a stationary T-dependent process with a.s. continuous path {Ys}, a similar, in terms of P{max0skTYs<u}, k=1,2 formula for P{max0stYsu}, t>3T and apply this formula to the process Ys=W(s+1)−W(s), s0, where {W(s)} is the Wiener process. We then obtain numerical estimations of the above probabilities.  相似文献   

4.
Consider the following Itô stochastic differential equation dX(t) = ƒ(θ0, X(t)) dt + dW(t), where (W(t), t 0), is a standard Wiener process in RN. On the basis of discrete data 0 = t0 < t1 < …<tn = T; X(t1),...,X(tn) we would like to estimate the parameter θ0. We shall define the least squares estimator and show that under some regularity conditions, is strongly consistent.  相似文献   

5.
Let X1, X2, …, Xn be i.i.d. d-dimensional random vectors with a continuous density. Let and . In this paper we find that the distribution of Zk (or Yk) can be used for characterizing multivariate normal distribution. This characterization can be employed for testing multivariate normality in terms of the so-called transformation method.  相似文献   

6.
Let G be a simple graph. The size of any largest matching in G is called the matching number of G and is denoted by ν(G). Define the deficiency of G, def(G), by the equation def(G)=|V(G)|−2ν(G). A set of points X in G is called an extreme set if def(GX)=def(G)+|X|. Let c0(G) denote the number of the odd components of G. A set of points X in G is called a barrier if c0(GX)=def(G)+|X|. In this paper, we obtain the following:

(1) Let G be a simple graph containing an independent set of size i, where i2. If X is extreme in G for every independent set X of size i in G, then there exists a perfect matching in G.

(2) Let G be a connected simple graph containing an independent set of size i, where i2. Then X is extreme in G for every independent set X of size i in G if and only if G=(U,W) is a bipartite graph with |U|=|W|i, and |Γ(Y)||U|−i+m+1 for any Y U, |Y|=m (1mi−1).

(3) Let G be a connected simple graph containing an independent set of size i, where i2. Then X is a barrier in G for every independent set X of size i in G if and only if G=(U,W) is a bipartite graph with |U|=|W|=i, and |Γ(Y)|m+1 for any Y U, |Y|=m (1mi−1).  相似文献   


7.
Maximal IM-unextendable graphs   总被引:3,自引:0,他引:3  
Qin Wang  Jinjiang Yuan   《Discrete Mathematics》2001,240(1-3):295-298
A graph G is maximal IM-unextendable if G is not induced matching extendable and, for every two nonadjacent vertices x and y, G+xy is induced matching extendable. We show in this paper that a graph G is maximal IM-unextendable if and only if G is isomorphic to Mr(Ks(Kn1Kn2Knt)), where Mr is an induced matching of size r, r1, t=s+2, and each ni is odd.  相似文献   

8.
Given two fixed graphs X and Y, the (X,Y)-intersection graph of a graph G is a graph where

1. each vertex corresponds to a distinct induced subgraph in G isomorphic to Y, and

2. two vertices are adjacent iff the intersection of their corresponding subgraphs contains an induced subgraph isomorphic to X.

This notion generalizes the classical concept of line graphs since the (K1,K2)-intersection graph of a graph G is precisely the line graph of G.

Let ( , respectively) denote the family of line graphs of bipartite graphs (bipartite multigraphs, respectively), and refer to a pair (X,Y) as a 2-pair if Y contains exactly two induced subgraphs isomorphic to X. Then and , respectively, are the smallest families amongst the families of (X,Y)-intersection graphs defined by so called hereditary 2-pairs and hereditary non-compact 2-pairs. Furthermore, they can be characterized through forbidden induced subgraphs. With this motivation, we investigate the properties of a 2-pair (X,Y) for which the family of (X,Y)-intersection graphs coincides with (or ). For this purpose, we introduce a notion of stability of a 2-pair and obtain the desired characterization for such stable 2-pairs. An interesting aspect of the characterization is that it is based on a graph determined by the structure of (X,Y).  相似文献   


9.
A random graph Gn(x) is constructed on independent random points U1,…,Un distributed uniformly on [0,1]d, d1, in which two distinct such points are joined by an edge if the l-distance between them is at most some prescribed value 0<x<1. The connectivity distance cn, the smallest x for which Gn(x) is connected, is shown to satisfy
(1)
For d2, the random graph Gn(x) behaves like a d-dimensional version of the random graphs of Erdös and Rényi, despite the fact that its edges are not independent: cn/dn→1, a.s., as n→∞, where dn is the largest nearest-neighbor link, the smallest x for which Gn(x) has no isolated vertices.  相似文献   

10.
A graph G with n vertices is said to be embeddable (in its complement) if there is an automorphism φ of Kn such that E(G) ∩ E(φ(G))=. It is known that all trees T with n (≥2) vertices and T K1,n−1 are embeddable. We say that G is 1-embeddable if, for every edge e, there is an automorphism φ of Kn such that E(G) ∩ E(φ(G))={e};and that it is 2-embeddable if,for every pair e1, e2 of edges, there is an automorphism φ of Kn such that E(G) ∩ E(φ(G))={e1, e2}. We prove here that all trees with n (3) vertices are 1-embeddable; and that all trees T with n (4) vertices and T K1,n−1 are 2-embeddable. In a certain sense, this result is sharp.  相似文献   

11.
Xuding Zhu 《Discrete Mathematics》1998,190(1-3):215-222
Suppose G is a graph. The chromatic Ramsey number rc(G) of G is the least integer m such that there exists a graph F of chromatic number m for which the following is true: for any 2-colouring of the edges of F there is a monochromatic subgraph isomorphic to G. Let Mn = min[rc(G): χ(G) = n]. It was conjectured by Burr et al. (1976) that Mn = (n − 1)2 + 1. This conjecture has been confirmed previously for n 4. In this paper, we shall prove that the conjecture is true for n = 5. We shall also improve the upper bounds for M6 and M7.  相似文献   

12.
A new method is developed for finite element (FE) domain decomposition. This method employs a hybrid graph-genetic algorithm for graph partitioning and correspondingly bisects finite element (FE) meshes.

A weighted incidence graph is first constructed for the FE mesh, denoted by G0. A coarsening process is then performed using heavy-edge matching. A sequence of such operations is employed in “n” steps, which leads to the formation of Gn with a size suitable for genetic algorithm applications.

Hereafter, Gn is bisected using conventional genetic algorithm. The shortest route tree algorithm is used for the formation of the initial population in genetic algorithm. Then an uncoarsening process is performed and the results are transferred to the graph Gn−1. The initial population for genetic algorithm on Gn−1is constructed from the results of Gn. This process is repeated until G0 is obtained in the uncoarsening operation. Employing the properties of G1, the graph G0 is bisected by the genetic algorithm.  相似文献   


13.
Gould et al. (Combinatorics, Graph Theory and Algorithms, Vol. 1, 1999, pp. 387–400) considered a variation of the classical Turán-type extremal problems as follows: For a given graph H, determine the smallest even integer σ(H,n) such that every n-term graphic sequence π=(d1,d2,…,dn) with term sum σ(π)=d1+d2++dnσ(H,n) has a realization G containing H as a subgraph. In this paper, for given integers k and ℓ, ℓ7 and 3kℓ, we completely determine the smallest even integer σ(kC,n) such that each n-term graphic sequence π=(d1,d2,…,dn) with term sum σ(π)=d1+d2++dnσ(kC,n) has a realization G containing a cycle of length r for each r, krℓ.  相似文献   

14.
Let Xt = Σj=-∞ cjZt - j be a moving average process where {Zt} is iid with common distribution in the domain of attraction of a stable law with index , 0 < < 2. If 0 < < 2, E|Z1| < ∞ and the distribution of |Z1|and |Z1Z2| are tail equivalent then the sample correlation function of {X1} suitably normalized converges in distribution to the ratio of two dependent stable random variables with indices and /2. This is in sharp contrast to the case E|Z1| = ∞ where the limit distribution is that of the ratio of two independent stable variables. Proofs rely heavily on point process techniques. We also consider the case when the sample correlations are asymptotically normal and extend slightly the classical result.  相似文献   

15.
Let G be finite group and let S be a subset of G. We prove a necessary and sufficient condition for the Cayley digraph X(G, S) to be primitive when S contains the central elements of G. As an immediate consequence we obtain that a Cayley digraph X(G, S) on an Abelian group is primitive if and only if S−1S is a generating set for G. Moreover, it is shown that if a Cayley digraph X(G, S) on an Abelian group is primitive, then its exponent either is or is not exceeding . Finally, we also characterize those Cayley digraphs on Abelian groups with exponent . In particular, we generalize a number of well-known results for the primitive circulant matrices.  相似文献   

16.
E.H. Spanier (1992) has constructed, for a cohomology theory defined on a triangulated space and locally constant on each open simplex, a spectral sequence whose E2-term consists of certain simplicial cohomology groups, converging to the cohomology of the space. In this paper we study a closed G-fibration ƒ: YX, where G is a finite group. We show that if the base-G-spaceX is equivariantly triangulated and Y is paracompact, then Spanier's spectral sequence yields an equivariant Serre spectral sequence for ƒ. The main point here is to identify the equivariant singular cohomology groups of X with appropriate simplicial cohomology groups of the orbit space X/G.  相似文献   

17.
Dumont and Foata have defined a polynomial Fn(x, y, z) recursively. They proved that Fn(x, y, z) is symmetric in x, y, z and that Fn(1, 1, 1) = G2n+2 the Genocchi number. Moreover, they gave an elegant combinatorial interpretation for the coefficients of Fn(x, y, z). In the present paper explicit formulas and generating functions for Fn(x, y, z) are obtained.  相似文献   

18.
If the edges of a graph G are colored using k colors, we consider the color distribution for this coloring a=(a1,a2,…,ak), in which ai denotes the number of edges of color i for i=1,2,…,k. We find inequalities and majorization conditions on color distributions of the complete bipartite graph Kn,n which guarantee the existence of multicolored subgraphs: in particular, multicolored forests and trees. We end with a conjecture on partitions of Kn,n into multicolored trees.  相似文献   

19.
Let G be a metrizable topological group. Denote by itb(G) the smallest cardinality of a cover of G by totally bounded subsets of G. A group G is defined to be σ-bounded if itb(G)0. The group G is called o-bounded if for every sequence (Un)nω of neighborhoods of the identity in G there exists a sequence (Fn)nω of finite subsets in G such that G=nωFn·Un; G is called strictly o-bounded (respectively OF-determined) if the second player (respectively one of the players) has a winning strategy in the following game OF: two players, I and II, choose at every step n an open neighborhood Un of the identity in G and a finite subset Fn of G, respectively. The player II wins if G=nωFn·Un.

For a second countable group G the following results are proven. . If G is strictly o-bounded, then itb(G)1 and G is σ-bounded or meager. If the space G is analytic, then the group is OF-determined and satisfies . G is σ-bounded if it is strictly o-bounded and one of the following conditions holds: (i) G is analytic; (ii) ; (iii) (MA+¬CH) holds; (iv) analytic games are determined; (v) there exists a measurable cardinal. Also we show that under (MA) every non-locally compact Polish Abelian divisible group contains a Baire o-bounded OF-undetermined subgroup.  相似文献   


20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号