首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The complexation properties of three related macrocycles derived from 4,13-diaza-18-crown-6 toward lead(II) are reported. The flexible macrocycle N,N'-bis(2-aminobenzyl)-4,13-diaza-18-crown-6 (L(2)) forms stable complexes with this metal ion in the presence of different counterions (perchlorate and thiocyanate). The X-ray crystal structure of [PbL(2)](SCN)(2) indicates that, in the solid state, the lead(II) ion is eight-coordinated and fits quite well into the crown hole favoring an anti arrangement of the organic receptor, which generates a very infrequent cubic coordination polyhedron around the Pb(II) ion. In solution both complexes are fluxional and the nature of the counterion seems to affect the dynamic behavior. Ligand L(3), N,N'-bis[(2-salicylaldimino)benzyl]-4,13-diaza-18-crown-6, derives from L(2) by condensation of salicylaldehyde with the amine group of each side arm. It can be deprotonated to yield cationic complexes of formula [Pb(L(3)-H)](+) where the metal ion lies asymmetrically on the cavity of the ligand, being seven-coordinated and pushed out from the crown hole, the bibracchial lariat ether presents a syn arrangement, and one of the arms remains uncoordinated. The lead(II) ion also lies asymmetrically on the cavity of the third macrocycle (L(7)), a lateral macrobicycle incorporating a phenolyl Schiff-base spacer. Spectrophotometric titrations of L(2) and (L(3)-2H)(2)(-) with lead(II) perchlorate in acetonitrile gave values of log K[PbL(2)] = 7.7(5) and log K[Pb(L(3)-2H)] = 7.2(3), demonstrating that the stability of the lead(II) complexes with these two ligands is very similar.  相似文献   

2.
Katsuta S  Tsuchiya F  Takeda Y 《Talanta》2000,51(4):637-644
The formation constants (K(ML)) in water of 1:1 complexes of benzo-18-crown-6 (B18C6) and 18-crown-6 (18C6) with Zn(2+) and Cd(2+), the sizes of which are much smaller than the ligand cavities, were determined at 25 degrees C by conductometry. Compared with Cd(2+), the crown ethers form more stable complexes with Zn(2+) although the size of Zn(2+) is less suited for the cavities. B18C6 forms a more stable complex with each metal ion than 18C6. Moreover, the extraction equilibria of these metal ions (M(2+)) with B18C6 (L) for the benzene/water system in the presence of picric acid (HA) were investigated at 25 degrees C. The association between L and HA in benzene was examined for evaluating the intrinsic extraction equilibria of M(2+) with B18C6. The extracted species were found to be MLA(2) and ML(2)A(2), and the overall extraction constants (K(ex,1) and K(ex,2), respectively) were obtained. The values of K(ex,1) for these metal ions are almost the same, but the K(ex,2) is larger for Zn(2+) than for Cd(2+). The extraction selectivity was interpreted quantitatively by the constituent equilibrium constants, i.e. K(ML), the ion-pair extraction constant of ML(2+) with A(-), and the adduct formation constant of MLA(2) with L in benzene.  相似文献   

3.
A new complex compound, [K2(18-crown-6)2[K(18-crown-6)(EtOH)]2[Er(NCS)6](SCN) (I), was synthesized and its crystal structure was studied by X-ray diffraction. In this work, the synthes and X-ray difraction stady of the crystals of a new complex, hexakis (isothiocyanato) erbiu(III) thiocyanate bis(18-crown-6) dipotassium bis(18-crown-6) ethanolpotassium], [K2(18-crown-6)2][K(18-crown-6)(ETON)]2[Er(NCS)6(SCN)(I)] are described. In crystal I, the alternating [Er(NCS)6]3? anions and binuclear complex cation [K(18-crown-6)2]2+ from infinite chains via the F-S bonds, while two complex cations [K(18-crown-6)(ETON)]+ and the statistically disordered SCN? anion between them are linked by the hydragen bonds O-H…S and O-H…N. Complex I contains the host-guest complex cations [K2(18-crown-6)2)]2+ and [K(18-crown-6)(ETON)]+ [1]. The alternating octabedral [Er(NCS)6]3? anions and binuclear complex cations [K2(18-crown-6)2]2+of crystal I form infinite chains via the K-S bonds, while two complex cations [K(18-crown-6)(EtOH)]+ and the statistically disordered SCN? anion lying between them are linked by interionic hydrogen bonds O-H…S and O-H…N. Complex I contains the host-guest complex cations [K2(18-crown-6)2]2+ and [K(18-crown-6)(EtOH)]+ [1].  相似文献   

4.
A new complex compound, i.e., tetrakis(isothiocyanato)manganese(II) bis[aqua(18-crown-6)potassium] (18-crown-6)(thiocyanato)potassium, was synthesized and its crystal structure was studied by X-ray diffraction (space group P21/m, a = 13.377, b = 14.690, c = 17.499 Å, β = 108.96°, Z = 2) and refined by the least-squares method in anisotropic approximation to R = 0.060 for 4715 independent reflections (CAD-4 automated diffractometer, λMoK α). In the crystal, infinite chains are formed through the coordination bonds between its components. The monomer fragment of a chain [Mn(NCS)5K3(18-crown-6)3(H2O)2] lies in plane m; three of the five SCN? ligands and one of the two water molecules behave as bridges. The [Mn(NCS)4]2? anion has the tetrahedral structure. The coordination polyhedron of each of the three K+ cations is a distorted hexagonal bipyramid with six O atom of the corresponding crown ligand in a base. Three 18-crown-6 ligands have standard crown conformation.  相似文献   

5.
The salts [18-crown-6-K](4)[Sn(4)Se(10)].5en and [18-crown-6-K](4)[Sn(4)Te(10)].3en.2THF were isolated upon addition of THF to the ethylenediamine (en) extracts of the alloys KSn(0.90)Se(1.93) and K(4)Sn(4)Te(10) that had been extracted in the presence of 18-crown-6 (1,4,7,10,13,16-hexaoxacyclooctadecane). The Sn(4)Te(10)(4-) anion has been structurally characterized for the first time by a single-crystal X-ray diffraction study of [18-crown-6-K](4)[Sn(4)Te(10)].3en.2THF: P2(1)/n, a = 22.420(5) A, b = 19.570(4) A, c = 24.680(5) A, beta = 96.90(3)(o), Z = 4, and R(1) = 0.0468 at -183 degrees C. In addition to Si(4)Te(10)(4-) and Ge(4)Te(10)(4-), the Sn(4)Te(10)(4-) anion represents the only other known group 14 adamantanoid telluride. The X-ray crystal structure determination of the related [18-crown-6-K](4)[Sn(4)Se(10)].5en salt has also been determined: P2(1)/n, a = 22.003(2) A, b = 18.966(2) A, c = 24.393(2) A, beta = 97.548(8)(o), Z = 4, and R(1) = 0.0843 at -123 degrees C. The anion geometries are of the adamantanoid type where the Sn(IV) atoms occupy the bridgehead positions and the chalcogen atoms occupy the bridging and terminal sites. The energy minimized geometries of Sn(4)Ch(10)(4-) have also been determined using density functional theory (DFT). Mayer bond order analyses, Mayer valencies, and empirical bond valencies indicate that the terminal Sn-Ch bonds have significant multiple bond character, with the terminal Sn-Se bond having more multiple bond character than the terminal Sn-Te bond. The vibrational frequencies of the Sn(4)Se(10)(4-) and Sn(4)Te(10)(4-) anions have been calculated using DFT methods, allowing the Raman spectrum of Sn(4)Se(10)(4-) to be fully assigned.  相似文献   

6.
Addition of 1 equiv of potassium metal to a tetrahydrofuran (THF) solution of Zn(2)(4,4'-bipyridine)(mes)(4) (1; mes =2,4,6-Me(3)C(6)H(2)) in the presence of 18-crown-6 (1,4,7,10,13,16-hexaoxacyclooctadecane) yielded the radical anionic species [Zn(2)(4,4'-bipyridine)(mes)(4)](?-), which was characterized by single crystal X-ray diffraction in [K(18-crown-6)(THF)(2)][Zn(2)(4,4'-bipyridine)(mes)(4)] (2). A similar reaction employing 2 equiv of alkali metal afforded the related complex [K(18-crown-6)](2)[Zn(2)(4,4'-bipyridine)(mes)(4)] (3). The [Zn(2)(4,4'-bipyridine)(mes)(4)](n-) (n = 0-2) moieties present in 1-3 are largely isostructural, yet exhibit significant structural variations which arise because of differences in their electronic structure. These species represent a homologous series of complexes in which the ligand exists in three distinct oxidation states. Structural data, spectroscopic measurements, and density functional theory (DFT) calculations are consistent with the assignment of 1, 2, and 3 as complexes of the neutral, radical anionic, and dianionic 4,4'-bipyridyl ligand, respectively. To the best of our knowledge, species 2 and 3 are the first crystallographically characterized transition metal complexes of the 4,4'-bipyridyl radical and dianion.  相似文献   

7.
Crystal Structures of „Supramolecular”︁ Benzo‐18‐crown‐6 Potassium Tetrathiocyanato Metallates: A Dimeric Complex {[K(Benzo‐18‐crown‐6)]2[Hg(SCN)4]}2 and Two Isomeric Complexes [K(Benzo‐18‐crown‐6)][Cd(SCN)3] Containing Trithiocyanato Cadmate Anions with Chain Structures By reaction of potassium thiocyanatomercurate(II) complexes with benzo‐18‐crown‐6 (2,3‐benzo‐1,4,7,10,13,16‐hexaoxacyclooctadec‐2‐ene) crystals of {[K(benzo‐18‐crown‐6)]2[Hg(SCN4)]}2 ( 1 ) were obtained. 1 crystallizes monoclinic, space group P21/n (non‐standard setting of P21/c), a = 1737.35(2), b = 1377.16(2), c = 1984.12(3) pm, β = 100.637(1)°, Z = 2. With potassium tetrathiocyanatocadmate(II) two modifications of a complex [K(benzo‐18‐crown‐6)][Cd(SCN)3] ( 2 , 3 ), of different symmetry were formed. 2 crystallizes monoclinic, P21/c, a = 1158,31(3), b = 1096,55(2), c = 2028,46(2) pm, β = 99,5261(2)°, Z = 4, 3  orthorhombic, P21cn, a = 1105,95(3), b = 1413,07(4), c = 1617,10(5) pm, Z = 4. 1 has a dimeric structure, built up from a dication K2(benzo‐18‐crown‐6)2]2+ and two [K(benzo‐18‐crown‐6)]+ cations, which are bridged by two [Hg(SCN)4]2– anions. In 2 and 3 triply bridged infinite [{Cd(SCN)3}n] zigzag chains, stretching along screw axes, are to be found as anions. In 2 these chains exist in two conformations related by inversion symmetry, whereas in 3 only one form can be found. [K(benzo‐18‐crown‐6)]+ cations are linked to the anion chains via K · · · S interactions of different lengths.  相似文献   

8.
Solvent extraction with 0.05 mol L(-1) dicyclohexano-18-crown-6 (DC18C6) in 1,2-dichloroethane, coupled with flame atomic absorption spectrometry (AAS), has been investigated as a new method for separation of trace amounts of silver(I) from 0.05 mol L(-1) potassium thiocyanate in 1.0 mol L(-1) hydrochloric acid media and quantification of the amount of silver present. The method is based on the formation of an extractable ion-association product, [DC18C6.K](+)[Ag(SCN)(2)](-), with a metal-to-crown ether ratio of 1:1 (as derived from slope analysis data). Stripping of the extracted silver(I) in the 1,2-dichloroethane phase was achieved within 5 min by use of 3.0 mol L(-1) potassium thiocyanate. Reducing the concentration of acid in the sample solution to 0.1 mol L(-1) improved the preconcentration factor severalfold. Excellent tolerance of the proposed method to the presence of foreign ions in solution with silver(I) was demonstrated. A detection limit of 13 ng mL(-1) was derived from the mean value of the blank plus three times its standard deviation. The method was used to determine traces of silver(I) after separation from gold(III), platinum(IV), and palladium(II) matrices on the basis of extractability differences with 18-membered crown ethers under specified conditions. The efficiency of the adopted ion-association mechanism for silver(I) extraction was apparent from the average recovery of 96% for spiked standards by use of the back-washing technique. The proposed extraction procedure was applied to the determination of traces of silver(I) in a selection of chemical reagents.  相似文献   

9.
Two supramolecular crown ether complexes [Na(DC18C6-A)(H2O)]{[Na(DC18C6-A)][Cd(mnt)2]} (1) and [K(DC18C6-A)]2[Cd(mnt)2] (2) (DC18C6-A = cis-syn-cis-dicyclohexyl-18-crown-6, isomer A; mnt = maleonitriledithiolate) have been synthesized and characterized by elemental analysis, FT-IR spectroscopy and X-ray single crystal diffraction. Complex 1 is composed of one [Na(DC18C6-A)(H2O)]+ complex cation and one {[Na(DC18C6-A)][Cd(mnt)2]}complex anion and displays an infinite chain-like structure through N–Na–N interactions. In complex 2, [K(DC18C6-A)]+ complex cation and [Cd(mnt)2]2− complex anion afford a novel 1D ladder-like structure by N–K–N, N–K–S interactions.  相似文献   

10.
Gomis DB  Jimeno SA  Sanz-Medel A 《Talanta》1982,29(9):761-765
A method is described for the direct spectrophotometric determination of micro-amounts of niobium by extraction into a benzene solution of dibenzo-18-crown-6 (L) from 3M hydrochloric acid containing potassium thiocyanate. The molar absorptivity of the extracted complex is 3.85 +/- 0.03 x 10(4) 1.mole(-1).cm(-1) (relative standard deviation 0.8%). Co-ordinatively unsaturated complexes of the type [NbO(SCN)(3)](2)L and NbO(SCN)(3)L are extracted, along with ion-pairs, especially when small amounts of L are used for extraction. The ion-pair complex [NbOCl(2)(SCN)(3)][(LK)(2)] seems to be the main species formed in the organic phase.  相似文献   

11.
Synthesis and Crystal Structure of [Ba(18-Crown-6)(DMF)4][Cd(Se4)2] The title compound has been prepared by the reaction of a DMF-solution of lithium polyselenide with BaSe2 and cadmium acetate in the presence of 18-crown-6, forming black crystals. The compound was characterized by IR spectroscopy and by an X-ray structure determination. Space group P2/a, Z = 4, 5392 observed unique reflections, R = 0.048. Lattice dimensions at ?90°C: a = 2021.9(12); b = 1019.8(6); c= 2270.8(14)pm, ß = 106.98(4)°. The structure consists of [Ba(18-crown-6)(DMF)4]2+ ions, in which the barium ions are coordinated by the six oxygen atoms of the crown ether molecule and by four oxygen atoms of the DMF molecules, and of [Cd(Se4)2]2? ions. The cadmium atoms are coordinated by two tetraselenide ions in a chelating fashion.  相似文献   

12.
A new crystalline complex, (18-crown-6)potassium tris(thiocyanato)nickelate(II), [Ni(SCN)3K(18-crown-6)] n (I) was synthesized and studied by X-ray diffraction: space group Cmc21, a = 14.749, b = 15.045, c = 10.216 Å, Z = 4, direct method, least-squares full-matrix refinement in anisotropic approximation to R = 0.022 on 2214 independent reflection, CAD-4 automated diffractometer, λMoK α. In crystal structure I, the [Ni(SCN)3] n ? chains are directed along the axis z with the host-guest [K(18-crown-6)]+ fragments attached through the weak K-S bonds to the chains at the side. The complex cations and anions lie in crystallographic plane m. The Ni2+ cation has a distorted octahedral coordination. The coordination polyhedron of the K+ cation is a distorted hexagonal pyramid with six O atoms of the 18-crown-6 ligand in the base and bifurcate axial vertex at the S and S′ atoms of two SCN? ligands.  相似文献   

13.
Deep-blue solutions of Y(2+) formed from Y(NR(2))(3) (R = SiMe(3)) and excess potassium in the presence of 18-crown-6 at -45 °C under vacuum in diethyl ether react with CO at -78 °C to form colorless crystals of the (CO)(1-) radical complex, {[(R(2)N)(3)Y(μ-CO)(2)][K(2)(18-crown-6)(2)]}(n), 1. The polymeric structure contains trigonal bipyramidal [(R(2)N)(3)Y(μ-CO)(2)](2-) units with axial (CO)(1-) ligands linked by [K(2)(18-crown-6)(2)](2+) dications. Byproducts such as the ynediolate, [(R(2)N)(3)Y](2)(μ-OC≡CO){[K(18-crown-6)](2)(18-crown-6)}, 2, in which two (CO)(1-) anions are coupled to form (OC≡CO)(2-), and the insertion/rearrangement product, {(R(2)N)(2)Y[OC(═CH(2))Si(Me(2))NSiMe(3)]}[K(18-crown-6)], 3, are common in these reactions that give variable results depending on the specific reaction conditions. The CO reduction in the presence of THF forms a solvated variant of 2, the ynediolate [(R(2)N)(3)Y](2)(μ-OC≡CO)[K(18-crown-6)(THF)(2)](2), 2a. CO(2) reacts analogously with Y(2+) to form the (CO(2))(1-) radical complex, {[(R(2)N)(3)Y(μ-CO(2))(2)][K(2)(18-crown-6)(2)]}(n), 4, that has a structure similar to that of 1. Analogous (CO)(1-) and (OC≡CO)(2-) complexes of lutetium were isolated using Lu(NR(2))(3)/K/18-crown-6: {[(R(2)N)(3)Lu(μ-CO)(2)][K(2)(18-crown-6)(2)]}(n), 5, [(R(2)N)(3)Lu](2)(μ-OC≡CO){[K(18-crown-6)](2)(18-crown-6)}, 6, and [(R(2)N)(3)Lu](2)(μ-OC≡CO)[K(18-crown-6)(Et(2)O)(2)](2), 6a.  相似文献   

14.
The dimeric iron carbonyl [CpFe(CO)(2)](2) and the iodosilanes tBu(2)RSiI were obtained from the reaction of [CpFe(CO)(2)]I with the silanides Na[SiRtBu(2)] (R = Me, tBu) in THF. By the reactions of [CpFe(CO)(2)]I and Na[SiRtBu(2)] (R = Me, tBu) the disilanes tBu(2)RSiSiRtBu(2) (R = Me, tBu) were additionally formed using more than one equivalent of the silanide. In this context it should be noted that reduction of [CpFe(CO)(2)](2) with Na[SitBu(3)] gives the disilanes tBu(3)SiSitBu(3) along with the sodium ferrate [(Na(18-crown-6))(2)Cp][CpFe(CO)(2)]. The potassium analogue [(K(18-crown-6))(2)Cp][CpFe(CO)(2)] (orthorhombic, space group Pmc2(1)), however, could be isolated as a minor product from the reaction of [CpFe(CO)(2)]I with [K(18-crown-6)][PtBu(2)BH(3)]. The reaction of [CpFe(CO)(2)](2) with the potassium benzophenone ketyl radical and subsequent treatment with 18-crown-6 yielded the ferrate [K(18-crown-6)][CpFe(CO)(2)] in THF at room temperature. The crown ether complex [K(18-crown-6)][CpFe(CO)(2)] was analyzed using X-ray crystallography (orthorhombic, space group Pna2(1)) and its thermal behaviour was investigated.  相似文献   

15.
Crown Ether Complexes of Lead(II). The Crystal Structures of [PbCl(18-Krone-6)][SbCl6], [Pb(18-Krone-6)(CH3CN)3][SbCl6]2 und [Pb(15-Krone-5)2][SbCl6]2 . [PbCl(18-crown-6)][SbCl6] has been prepared in low yield besides [Pb(CH3)2(18-crown-6)][SbCl6]2 by the reaction of Pb(CH3)2Cl2 with antimony pentachloride in acetonitrile solution in the presence of 18-crown-6, forming pale-yellow crystals. The other two title compounds are formed as colourless crystals by the reaction of PbCl2 with antimony pentachloride in acetonitrile solutions in the presence of 18-crown-6 and 15-crown-5, respectively. The complexes were characterized by IR spectroscopy and by crystal structure determinations. [PbCl(18-crown-6)][SbCl6]: Space group P21/c, Z = 8, 5 003 observed unique reflections, R = 0.046. Lattice dimensions at - 80°C: a = 1 386.9; b = 1 642.7; c = 2 172.1 pm, β = 92.95°. The lead atom in the cation [PbCl(18-crown-6)]+ is surrounded in an almost hexagonal-planar construction by the six oxygen atoms of the crown ether and an axially oriented Cl atom. [Pb(18-crown-6)(CH3CN)3][SbCl6]2: Space group P1 , Z = 2, 6 128 observed unique reflections, R = 0.076. Lattice dimensions at - 70°C: a = 1 228.0; b = 1 422.9; c = 1 463.2 pm, α = 69.08°; β = 65.71°; γ = 64.51°. In the cation [Pb(18-crown-6)(CH3CN)3]2+ the lead atom is coordinated by the six oxygen atoms of the crown ether and by the three nitrogen atoms of the acetonitrile molecules. The structure determination is restricted by disorder. [Pb( 15-crown-5)2][SbCI6]2: Space group P63/m, Z = 6, 5 857 observed unique reflections, R = 0.059. Lattice dimensions at -70°C: a = b = 2 198.5; c = 1499.4 pm, α = β = 90°, γ = 120°. In the cation [Pb(l5-crown-5)2]2 the lead atom is sandwich-like coordinated by the ten oxygen atoms of the two crown ether molecules. The structure determination is restricted by disorder.  相似文献   

16.
A new compound, aqua(dibenzo-18-crown-6)potassium (dibenzo-18-crown-6)(perchlorato-O)potassium perchlorate ([K(DB18C6)(H2O)]+ · [K(ClO4)(DB18C6)] · ClO 4 ? ; compound I) is synthesized and studied by X-ray crystallography. The crystals are triclinic: a = 9.050 Å, b = 9.848 Å, c = 26.484 Å, α = 82.87°, β = 84.16°, γ = 77.93°, Z = 2, space group P $\bar 1$ . The structure is solved by a direct method and refined by the full-matrix least-squares method in the anisotropic approximation to R = 0.058 for 5960 independent reflections (CAD4 diffractometer, λMoK α radiation). A complex cation [K(DB18C6)(H2O)]+ and a complex molecule [K(ClO4)(DB18C6)] are of the host-guest type; they are linked into a dimer through two K+ → π(C) bonds formed by one of the two K+ cations with two C atoms of the benzene ring of the DB18C6 ligand from the adjacent complex. Both DB18C6 ligands in I have a butterfly conformation with approximate symmetry C 2v .  相似文献   

17.
The extended structures of [K(1-aza-18-crown-6)]BH(4) and its 18-crown-6 analogue exhibits significantly different primary and secondary stabilizing interactions. However, their respective ion pairs display similar cation-to-anion interactions, in spite of the differences in the nature of the crown ether ligand.  相似文献   

18.
Summary CuII can be extracted from aqueous KSCN solutions using 2,3,11,12-dibenzo-1,7,10,13,16-hexaoxacyclooctadiene (di-benzo-18-crown-6) in CHCl3. Raman and i.r. spectroscopies establish that the species present in the organic phase after extraction corresponds to [Cu2OH(SCN)5]-[dibenzo-18-crown-6-K +]2, where the CuII thiocyanide complex and the K+ crown complex are ionically associated.  相似文献   

19.
Alizadeh N  Shamsipur M 《Talanta》1993,40(4):503-506
The complexation reactions between Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Pb(II) ions and benzo-15-crown-5, dicyclohexyl-18-crown-6, dibenzo-18-crown-6 and 1,10-diaza-18-crown-6 have been studied in dimethylsulphoxide solution at 25 degrees by means of a competitive spectrophotometric method using murexide as a metallochromic indicator. With the exception of Pb(II)(benzo-15-croqn-5)(2) the stoichiometry of the resulting complexes was found to be 1:1. The formation constants of the complexes were determined, and found to follow the Irving-Williams rule for the cations of the first transition series. It was found that the metal ion-18-crown interactions are strongly dependent on the nature of the substituents on the ring.  相似文献   

20.
The synergistic solvent extraction of 13 lanthanides with mixtures of 8-hydroxyquinoline (HQ) and the crown ethers (S) 18-crown-6 (18C6) or benzo-18-crown-6 (B18C6) in 1,2-dichloroethane has been studied. The composition of the extracted species has been determined as LnQ3 · S. The values of the equilibrium constant and separation factor have been calculated. Here, the effect of the synergistic agent (18C6 or B18C6) on the extraction process is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号