首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We describe the development of an electrophoresis microchip fabricated by a direct-printing process, based on lamination of printed polyester films with end-channel amperometric detection. The channel structures are defined by polyester (base and cover) and by a toner layer (walls). The polyester-toner devices presented an electroosmotic flow (EOF) magnitude of approximately 10(-5) cm2 V(-1) s(-1), which is generated by a polymeric mixture of the toner and polyester composition. The microelectrodes used for detection were produced combining this laser-printer technology to compact discs. The performance of this device was evaluated by amperometric detection of iodide and ascorbate. The detection limits found were 500 nmol.L(-1) (135 amol) and 1.8 micromol.L(-1) (486 amol) for iodide and ascorbate, respectively.  相似文献   

2.
This paper reports for the first time the use of colored toner to produce polyester toner (PT) ME devices. Colored PT devices were designed in drawing software and printed on a polyester film using a color laser printer with 3600 dpi resolution. The colored toner is composed of a copolymer mixture (styrene and acrylate), wax, silicon dioxide, and pigments. The presence of silica in the toner composition has enhanced the EOF magnitude and improved the analytical performance. For a pH range between 2 and 12, the EOF measured on a magenta PT chip, for example, ranged from 3.8 to 5.8 (× 10?4 cm2 V?1 s?1). Typical separations of inorganic cations (K+, Na+, and Li+) were used as model system to investigate the analytical feasibility of the proposed devices. The repeatability for the migration times of all analytes exhibited RSD values lower than 1% (n = 10). The separation efficiencies found on colored PT devices ranged from 10 000 to 49 000 plates/m, which means between 7 and 23% of the maximum theoretical efficiency on this microfluidic platform (1.85 × 105 plates/m). The improvements achieved on the proposed devices are associated with the small additional amount of silica on the toner composition as well as the printing of channels with smoother surfaces and better uniformity when compared to the conventional PT chips printed with monochromatic laser printers.  相似文献   

3.
A simple, fast, and inexpensive masking technology without any photolithographic step to produce glass microchannels is proposed in this work. This innovative process is based on the use of toner layers as mask for wet chemical etching. The layouts were projected in graphic software and printed on wax paper using a laser printer. The toner layer was thermally transferred from the paper to cleaned glass surfaces (microscope slides) at 130 degrees C for 2 min. After thermal transference, the glass channel was etched using 25% (v/v) hydrofluoric acid (HF) solution. The toner mask was then removed by cotton soaked in acetonitrile. The etching rate was approximately 7.1 +/- 0.6 microm min(-1). This process is economically more attractive than conventional methods because it does not require any sophisticated instrumentation and it can be implemented in any chemical/biochemical laboratory. The glass channel was thermally bonded against a flat glass cover and its analytical feasibility was investigated using capacitively coupled contactless conductivity detection (C(4)D) and laser-induced fluorescence (LIF) detection.  相似文献   

4.
The widespread interest in micro total analysis systems has resulted in efforts to develop devices in cheaper polymer materials such as polydimethylsiloxane (PDMS) as an alternative to expensive glass and silicon devices. We describe the oxidation of the PDMS surface to form ionizable groups using a discharge from a Tesla coil and subsequent chemical modification to augment electroosmotic flow (EOF) within the microfluidic devices. The flow performance of oxidized, amine-modified and unmodified PDMS materials has been determined and directly compared to conventional glass devices. Exact PDMS replicas of glass substrates were prepared using a novel two step micromolding protocol. Chemical force microscopy has been utilized to monitor and measure the efficacy of surface modification yielding information about the acid/base properties of the modified and unmodified surfaces. Results with different substrate materials correlates well with expected flow modifications as a result of surface modification. Oxidized PDMS devices were found to support faster EOF (twice that of native PDMS) similar to glass while those derivatized with 3-aminopropyl triethoxysilane (APTES) showed slower flow rates compared to native PDMS substrates as a result of masking surface charge. Results demonstrate that the surface of PDMS microdevices can be manipulated to control EOF characteristics using a facile surface derivatization methodology allowing surfaces to be tailored for specific microfluidic applications and characterized with chemical force microscopy.  相似文献   

5.
This paper presents a study of EOF properties of plasma‐polymerized microchannel surfaces and the effects of protein (fibrinogen and lysozyme) adsorption on the EOF behavior of the surface‐modified microchannels. Three plasma polymer surfaces, i.e. tetraglyme, acrylic acid and allylamine, are tested. Results indicate EOF suppression in all plasma‐coated channels compared with the uncoated glass microchannel surfaces. The EOF behaviors of the modified microchannels after exposure to protein solutions are also investigated and show that even low levels of protein adsorption can significantly influence EOF behavior, and in some cases, result in the reversal of flow. The results also highlight that EOF measurement can be used as a method for detecting the presence of proteins within microchannels at low surface coverage (<1 ng/cm2 on glass). Critically, the results illustrate that the non‐fouling tetraglyme plasma polymer is able to sustain EOF. Comparison of the plasma‐polymerized surfaces with conventionally grafted polyelectrolyte surfaces demonstrates the stabilities of the plasma polymer films, enabling multiple EOF runs over 3 days without deterioration in performance. The results of this study clearly demonstrate that plasma polymers enable the surface chemistry of microfluidic devices to be tailored for specific applications. Critically, the deposition of the non‐fouling tetraglyme coating enables stable EOF to be induced in the presence of protein.  相似文献   

6.
Belder D  Deege A  Kohler F  Ludwig M 《Electrophoresis》2002,23(20):3567-3573
The channels of microfluidic glass chips have been coated with poly(vinyl alcohol) (PVA). Applied for microchip electrophoresis, the coated devices exhibited a suppressed electroosmotic flow and improved separation performance. The superior performance of PVA-coated channels could be demonstrated by electrophoretic separations of labeled amines and by video microscopy. While a distorted sample zone is injected using uncoated channels the application of PVA-coated channels results in an improved shape of the sample zone with less band broadening. Applying PVA-coated microchips for the separation of amines labeled with Alexa Fluor 350 even sub-second separations, utilizing a separation length of only 650 microm, could be obtained, while this was not possible using uncoated devices. By using PVA-coated devices rather than an uncoated chip a threefold increase in separation efficiencies could be observed. As the electroosmotic flow (EOF) was suppressed, the anionic compounds were detected at the anode whereas the dominant EOF in uncoated devices resulted in an effective mobility to the cathode. Besides improved separation performance another important feature of the PVA-coated channels was the suppressed adsorption of fluorescent compounds in repetitive runs which results in an improved robustness and detection sensitivity. Applying PVA-coated channels, rinsing or etching steps could be omitted while this was necessary for a reliable operation of uncoated devices.  相似文献   

7.
This study develops and tests an experimental method to monitor in situ the dynamic spreading of individual toner particles on model substrates during heating, to simulate on laboratory scale the fusing sub-processes occurring in electrophotographic printing of paper. Real toner particles of cyan, magenta, yellow and black are transformed to perfect spheres by a temperature pre-treatment, then applied to the substrate, either high-energy clean glass or low-energy hydrophobised glass, and heated at rates up to 50 degrees C/min. The subsequent spreading as a function of time (and temperature) is recorded by an optical microscope and CCD camera mounted above the substrate, with the measured drop covering area used to calculate the corresponding toner-substrate-air contact angle. On the hydrophobic substrate the spreading is limited and equal for all four colours, while the substantially greater spreading on the hydrophilic substrate is accompanied by significant differences between the toner colours. In particular, the cyan and black toners are found to spread to almost twice the extent of the yellow particles. The dynamic spreading behaviour is interpreted in terms of complementary measurements of substrate and toner surface energy components and bulk toner rheology, and a simple empirical relation is proposed that fits very well the measurements for all toner and substrate types tested. In particular, the spreading relation is found to be determined only by the toner surface energy and its equilibrium contact angle, with no explicit dependence on toner viscosity.  相似文献   

8.
The surface properties of microfluidic devices play an important role in their flow behavior. We report here on an effective control of the surface chemistry and performance of polymeric microchips through a bulk modification route during the fabrication process. The new protocol is based on modification of the bulk microchip material by tailored copolymerization of monomers during atmospheric-pressure molding. A judicious addition of a modifier to the primary monomer solution thus imparts attractive properties to the plastic microchip substrate, including significant enhancement and/or modulation of the EOF (with flow velocities comparable to those of glass), a strong pH sensitivity and high stability. Carboxy, sulfo, and amino moieties have thus been introduced (through the incorporation of methylacrylic acid, 2-sulfoethyl-methacrylate and 2-aminoethyl-methacrylate monomers, respectively). A strong increase in the electroosmotic pumping compared to the native poly(methylmethacrylate)(PMMA) microchip (ca. electroosmotic mobility increases from 2.12 to 4.30 x 10(-4) cm(2) V(-1) s(-1)) is observed using a 6% methylacrylate (MAA) modified PMMA microchip. A 3% aminoethyl modified PMMA microchip exhibits a reversal of the electroosmotic mobility (for example, -5.6 x 10(-4) cm(2) V(-1) s(-1) at pH 3.0). The effects of the modifier loading and the pH on the EOF have been investigated for the MAA-modified PMMA chips. The bulk-modified devices exhibit reproducible and stable EOF behavior. The one step fabrication/modification protocol should further facilitate the widespread production of high-performance plastic microchip devices.  相似文献   

9.
The current-monitoring method was used to measure the electroosmotic flow (EOF) in borosilicate glass capillaries and zeonor plastic microfluidic devices. The surface of the zeonor devices must be oxidized to support EOF and this treatment shows signs of aging within 6 days. Oxidized zeonor devices showed the same response to changes in applied field, pH, and ionic concentration as the capillaries. The effects of several common dynamic surfactant coatings on the walls were also studied (0.1%, v/v solutions of POP-6, POP4, Pluronics L81, and NP-40). These generally significantly suppressed the EOF but required several days to stabilize.  相似文献   

10.
Ludwig M  Belder D 《Electrophoresis》2003,24(15):2481-2486
Chiral separations of fluorescein isothiocyanate-labeled amines have been performed in poly(vinyl alcohol) (PVA)-coated microfluidic glass chips. Baseline separation of enantiomers could be realized in coated devices while they could not be resolved in uncoated chips. The electroosmotic flow (EOF) in PVA-coated channels is suppressed over a wide pH range which leads to a considerable improved reproducibility of migration times in repetitive analysis. Due to the high resolution obtained in such devices, it was possible to reliable determine the enantiomeric purity with high accuracy. One percent of the minor enantiomer could be determined in the presence of large excess of the other enantiomer. As the EOF was suppressed, the anionic compounds were detected at the anode whereas the dominant EOF in uncoated devices resulted in an effective mobility to the cathode. Applying PVA-coated channels considerable improved precision of migration times was found. The relative standard deviation of migration times was below 1% in PVA-coated devices. Accordingly, excessive rinsing or etching steps in order to stabilize the EOF could be omitted while this was necessary for a reliable operation of uncoated devices.  相似文献   

11.
Inexpensive and disposable polyester microchips were fabricated through photolithographic and wet-chemical etching procedure, followed by replication using an imprinting method at room temperature. Laboratory-scale laser-induced fluorescence equipment was employed as a detection system. The generation of electroosmotic flow (EOF) on the polyester channels was discussed in this paper. Surfactants in the running buffer had a significant effect on the EOF depending on their types. The epsilon potential of the electric double layer formed by adsorbing sodium lauryl sulfate molecules on the wall of polyester channels seemed to be constant within the buffer pH investigated. EOF could also be suppressed to zero by adding polyoxyethylene 23 lauryl ether into the running buffer. The separation of two laser dyes was obtained using polyester chips through both micellar electrokinetic chromatography and capillary zone electrophoresis. The polyester channels modified with 10-undecen-1-ol exhibited a dramatically high-separation efficiency compared with the conventional fused-silica capillary tubes.  相似文献   

12.
The effect of successive multiple ionic layer (SMIL) coatings on the velocity and direction of EOF and the separation efficiency for PDMS electrophoresis microchips was studied using different polymer structures and deposition conditions. To date, the majority of SMIL studies have used traditional CE and fused-silica capillaries. EOF was measured as a function of polymer structure and number of layers, in one case using the same anionic polymer and varying the cationic polymer and in the second case using the same cationic polymer and varying the anionic polymer. In both situations, the EOF direction reversed with each additional deposited polymer layer. The absolute EOF magnitude, however, did not vary significantly with layer number or polymer structure. Next, different coatings were used to compare separation efficiencies on native and SMIL-coated PDMS microchips. For native PDMS microchips, the average separation efficiency was 4105 +/- 1540 theoretical plates. The addition of two layers of polymer increased the separation efficiency anywhere from two- to five-fold, depending on the polymer structure. A maximum separation efficiency of 12 880 +/- 1050 theoretical plates was achieved for SMIL coatings of polybrene (cationic) and dextran sulfate (anionic) polymers after deposition of six total layers. It was also noted that coating improved run-to-run consistency of the peaks as noted by a reduction of the RSD of the EOF and separation efficiency. This study shows that the use of polyelectrolyte coatings, irrespective of the polymer structure, generates a consistent EOF in the current experiments and dramatically improves the separation efficiency when compared to unmodified PDMS microchips.  相似文献   

13.
In capillary electrophoresis, the short optical path length associated with on-column UV detection imposes an inherent detection problem. Detection limits can be improved using sample stacking. Recently, large-volume sample stacking (LVSS) without polarity switching was demonstrated to improve detection limits of charged analytes by more than 100-fold. However, this technique requires suppression of the electroosmotic flow (EOF) during the run. This necessitates working at a low pH, which limits using pH to optimize selectivity. We demonstrate that LVSS can be performed at any buffer pH (4.0-10.0) if the zwitterionic surfactant Rewoteric AM CAS U is used to suppress the EOF. Sensitivity enhancements of up to 85-fold are achieved with migration time, corrected area, and peak height reproducibility of 0.8-1.6%, 1.3-3.7%, and 0.8-4.9%, respectively. Further, it is possible to stack either positively or negatively charged analytes using zwitterionic surfactants to suppress the EOF.  相似文献   

14.
This paper reports the fabrication of polyester-toner (PT) electrophoresis microchips with improved analytical performance and extended lifetime. This has been achieved with a better understanding about the EOF generation and the influence of some parameters including the channel dimensions (width and depth), the injection mode, and the addition of organic solvent to the running buffer. The analytical performance of the PT devices was investigated using a capacitively coupled contactless conductivity detector and inorganic cations as model analytes. The proposed devices have exhibited EOF values of (3.4 ± 0.2) × 10(-4) cm(2) V(-1) s(-1) with good stability over 25 consecutive runs. It has been found that the EOF magnitude depends on the channel dimension, i.e. the wider the channel, the higher the EOF value. The separation efficiency for inorganic cations ranged from 13 000 to 50 000 plates/m. The LOD found for K(+) , Na(+) , and Li(+) were 4.2, 7.3, and 23 μM, respectively. In addition, the same PT device has been used by three consecutive days. Lately, due to improved analytical performance, it was carried out by the first time the detection of inorganic cations in real samples such as energetic drinks and pharmaceutical formulations.  相似文献   

15.
Applications of poly(dimethylsiloxane) (PDMS)-based microfluidic systems are more popular nowadays. Previous fabrication methods of the masters for PDMS microchannels require complicated steps and/or special device. In this paper, we demonstrated that the toner printed on the transparency film with the office laser printer (1200 dpi) can be used as the positive relief of the masters. The transparency film was printed in two steps in order to obtain the same printing quality for the crossed lines. With the laser-printed master, the depth of the fabricated PDMS microchannels was ca. 10 microm and the smallest width was ca. 60 microm. Surface characteristics of the PDMS/PDMS microchannels were performed with SEM. Their electrokinetic properties were investigated by the aids of the measurement of electroosmotic flow (EOF) and the Ohm's curve. Using the PDMS/PDMS microchip CE systems, electroactive biological molecules and non-electroactive inorganic ions were well separated, respectively. This simple approach could make it easy to carry out the studies of PDMS microfluidic systems in more general labs without special devices.  相似文献   

16.
Mao L  Yuan R  Chai Y  Zhuo Y  Jiang W 《The Analyst》2011,136(7):1450-1455
The potential controlling silver catalysis for Ru(bpy)(3)(2+) electrochemiluminescence (ECL) signal at a special potential -0.4~1.25 V was newly developed as the new ECL signal amplification strategy for ultrasensitive protein detection. Firstly, the wheat-like deposited silver (DpAg) particles were modified on the bare glass carbon electrode (GCE) surface by cyclic voltammetry deposition to capture the primary antibodies and then bind the antigen analytes. Secondly, as a sandwich immunoreaction format, the secondary antibodies conjugated with the Ru(bpy)(3)(2+)-doped Pt (Pt@Ru) nanoparticles by the multi-sites biotin/streptavidin (SA) affinity can be captured onto the electrode surface to generate ECL signal. In the proposed Ru(bpy)(3)(2+) ECL system without any co-reactant, the detected ECL signal was amplified due to following multiple amplification strategies: (1) the ECL catalysis for Ru(bpy)(3)(2+) was performed by electro-inducing the DpAg particles to generate Ag(+) ion and controlled by the special potential. The catalyzer Ag(+) was produced near the electrode surface and reproduced by cyclic potential scan, which improved the catalytic efficiency. (2) The amount of the ECL signal probes linked to secondary antibodies were amplified by the adsorption of Pt nanoparticles and the multiple sites bridge linkage of biotin/SA. These new multiple signal amplification strategies made the proposed ECL immunosensor achieve ultrasensitive detection for model protein human IgG with a detection limit down to 3 pg mL(-1), which can be further extended to the detection of disease biomarkers.  相似文献   

17.
Thermoset polyester (TPE) microfluidic devices were previously developed as an alternative to poly(dimethylsiloxane) (PDMS) devices, fabricated similarly by replica molding, yet offering stable surface properties and good chemical compatibility with some organics that are incompatible with PDMS. This paper describes a number of improvements in the fabrication of TPE chips. Specifically, we describe methods to form TPE devices with a thin bottom layer for use with high numerical aperture (NA) objectives for sensitive fluorescence detection and optical manipulation. We also describe plasma-bonding of TPE to glass to create hybrid TPE-glass devices. We further present a simple master-pretreatment method to replace our original technique that required the use of specialized equipment.  相似文献   

18.
We report on a novel approach for controlling nanohydrodynamic properties at the solid-liquid interfaces through the use of stimuli-responding polymer coatings. The end-tethered polymers undergo a phase separation upon external activation. The reversible change in the thickness and polarity of the grafted polymers yields in a dynamic control of the surface-generated, electrokinetic phenomena. Nonactivated, swollen polymers are thicker than the electrical double layer (EDL) and prohibit the development of an EOF even on charged surfaces. On the other hand, activated polymer chains shrink and become thinner than the EDL and allow for the EOF to build up unimpeded. We show here that, for given experimental conditions, the EOF velocity on the shrunken surface is 35 times greater than the one on the nonactivated surface. Furthermore, we reveal that coupling of such surfaces with dense arrays of thermal actuators developed in our laboratory can lead to novel micro- and nanofluidic devices.  相似文献   

19.
In this work, a piece of glass fiber was inserted into the channel of a poly(methyl methacrylate) (PMMA) electrophoresis microchip to enhance the electroosmotic flow (EOF) and the separation efficiency. The EOF value of the glass fiber-containing microchannel at pH 8.2 was determined to be 4.17 x 10(-4)cm2 V(-1)s(-1). The performance of the new microchip was demonstrated by its ability to separate and detect three purines coupled with end-column amperometric detection. In addition, a piece of trypsin-immobilized glass fiber was inserted into the channel of a PMMA microchip to fabricate a core-changeable microfluidic bioreactor that can be regenerated by changing the fiber. The in-channel fiber bioreactor has been coupled with matrix-assisted laser desorption ionization time-of-flight mass spectrometry for the digestion and peptide mapping of bovine serum albumin and myoglobin.  相似文献   

20.
This paper describes the fabrication of microfluidic cloth-based analytical devices (μCADs) using a simple wax patterning method on cotton cloth for performing colorimetric bioassays. Commercial cotton cloth fabric is proposed as a new inexpensive, lightweight, and flexible platform for fabricating two- (2D) and three-dimensional (3D) microfluidic systems. We demonstrated that the wicking property of the cotton microfluidic channel can be improved by scouring in soda ash (Na(2)CO(3)) solution which will remove the natural surface wax and expose the underlying texture of the cellulose fiber. After this treatment, we fabricated narrow hydrophilic channels with hydrophobic barriers made from patterned wax to define the 2D microfluidic devices. The designed pattern is carved on wax-impregnated paper, and subsequently transferred to attached cotton cloth by heat treatment. To further obtain 3D microfluidic devices having multiple layers of pattern, a single layer of wax patterned cloth can be folded along a predefined folding line and subsequently pressed using mechanical force. All the fabrication steps are simple and low cost since no special equipment is required. Diagnostic application of cloth-based devices is shown by the development of simple devices that wick and distribute microvolumes of simulated body fluids along the hydrophilic channels into reaction zones to react with analytical reagents. Colorimetric detection of bovine serum albumin (BSA) in artificial urine is carried out by direct visual observation of bromophenol blue (BPB) colour change in the reaction zones. Finally, we show the flexibility of the novel microfluidic platform by conducting a similar reaction in a bent pinned μCAD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号