首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Superporous agarose beads were used as a support for hydrophobic interaction chromatography. These beads have large connecting flow pores in addition to their normal diffusion pores. The flow pores, which are approximately one fifth of the overall diameter of the superporous agarose beads, were earlier shown to give the beads improved mass transfer properties relative to homogeneous agarose beads (Gustavsson and Larsson, J. Chromatogr. A, 734 (1996) 231–240). Superporous agarose beads and homogeneous agarose beads of the same particle size range (106–180 μm) were derivatized with phenyl groups. The properties of the superporous beads were then compared with the homogeneous beads in the separation of a mixture of three model proteins (ribonuclease A, lysozyme and bovine serum albumin) at various superficial flow velocities from 30 to 600 cm/h. The superporous beads gave satisfactory separation at flow velocities five times higher than was possible for homogeneous beads. The performance of the two types of beads was also compared in the purification of lactate dehydrogenase from a beef heart extract at a superficial flow velocity of 150 cm/h. The superporous beads performed considerably better, leading to twice the purification factor and twice the concentration of the desired product. The results were interpreted using the theoretical treatment given by Carta and Rodrigues (Carta and Rodrigues, Chem. Eng. Sci., 48 (1993) 3927).  相似文献   

2.
A new type of fibre-based anion-exchange material for plasmid purification was developed. The basic material consisted of non-porous silica fibres with a mean diameter of 1.5 microm and a surface area of 2.4m(2)g(-1). The fibre surface was provided with several types of ligands, either by adsorption of polymers (chitosan or poly(ethyleneimine)) or by polymerization of amine-containing acrylic monomers onto a propyl methacrylate-silanized surface. The resulting polymer layers contained primary, tertiary or quaternary amines as ion-exchange groups. The packing density could be varied considerably, 9-34% (v/v). The loose packing structure provided excellent flow properties suitable for high-speed operations. The best overall performance was shown by silica fibres provided with tertiary amine polymers, having a plasmid-binding capacity of 0.9 mg ml(-1) (pre-purified plasmid) and a plasmid recovery of 62% (performance data remained stable though several adsorption cycles). The high flow rates possible with the fibre material made it especially useful when large volumes of cleared lysate were processed. The columns could be operated with retention of their adsorption properties at speeds of up to 1800 cm h(-1), equivalent to 0.5 column volumes per minute. The binding capacity was found to be lower than anticipated from the design of the fibres. Fluorescence imaging showing individual plasmid molecules indicated the fibre population to be heterogeneous with respect to plasmid adsorption, some fibres displaying poor binding properties. Possible reasons for this heterogeneity are discussed.  相似文献   

3.
A novel chromatographic medium for high-capacity protein adsorption was fabricated by grafting dextran (40 kDa) onto the pore surfaces of superporous agarose (SA) beads. The bead was denoted as D-SA. D-SA, SA and homogeneous agarose (HA) beads were modified with sulfopropyl (SP) group to prepare cation exchangers, and the adsorption and uptake of lysozyme on all three cation-exchange chromatographic beads (SP-HA, SP-SA and SP-D-SA) were investigated at salt concentrations of 6–50 mmol/L. Static adsorption experiments showed that the adsorption capacity of SP-D-SA (2.24 mmol/g) was 78% higher than that of SP-SA (1.26 mmol/g) and 54% higher than that of SP-HA (1.45 mmol/g) at a salt concentration of 6 mmol/L. Moreover, salt concentration had less influence on the adsorption capacity and dissociation constant of SP-D-SA than it did on SP-HA, suggesting that dextran-grafted superporous bead is a more potent architecture for chromatographic beads. In the dynamic uptake of lysozyme to the three cation-exchange beads, the De/D0 (the ratio of effective pore diffusivity to free solution diffusivity) values of 1.6–2.0 were obtained in SA-D-SA, indicating that effective pore diffusivities of SP-D-SA were about two times higher than free solution diffusivity for lysozyme. At 6 mmol/L NaCl, the De value in SA-D-SA (22.0 × 10−11 m2/s) was 14.4-fold greater than that in SP-HA. Due to the superior uptake kinetics in SA-D-SA, the highest dynamic binding capacity (DBC) and adsorption efficiency (the ratio of DBC to static adsorption capacity) was likewise found in SP-D-SA. It is thus confirmed that SP-D-SA has combined the advantages of superporous matrix structure and drafted ligand chemistry in mass transport and offers a new opportunity for the development of high-performance protein chromatography.  相似文献   

4.
Efficient loading on a chromatographic column is the dilemma of the process development faced by engineers in plasmid DNA purification. In this research, novel arginine‐affinity chromatographic beads were prepared to investigate the effect of spacer arm and ligand density to their chromatographic performance for the purification of plasmid. The result indicated that dynamic binding capacity for plasmid increased with an increasing ligand density and carbon number of spacer arm, and the highest binding capacity for plasmid of 6.32 mg/mL bead was observed in the column of arginine bead with a ligand density of 47 mmol/L and 10‐atom carbon spacer. Furthermore, this arginine bead exhibited better selectivity to supercoiled (sc) plasmid. The evidence of a linear gradient elution suggested further that the binding of plasmid on arginine beads was driven by electrostatic interaction and hydrogen bonding. Hence, sc plasmid could successfully be purified from clarified lysate by two‐stepwise elution of salt concentration. By the refinement of the elution scheme and loading volume of clarified lysate, the column of arginine bead with a ligand density of 47 mmol/L exhibited the highest recovery yield and a much higher productivity among arginine‐affinity columns. Therefore, reshaped arginine beads provided more feasible and practical application in the preparation of sc plasmid from clarified lysate.  相似文献   

5.
Fast-flow spherical homogeneous agarose beads were prepared by an emulsification method, and were cross-linked and activated by repeated treatment with allylbromide and bromine/water, followed by alkali. Bis(2-aminopyridyl)dioxime (APD) was synthesized by the reaction of 2-aminopyridine, and dichloroglyoxime and characterized by melting-point as well as IR, 1HNMR, 13CNMR and MS spectroscopies. APD was chemically linked to activated agarose beads to be employed for the column preconcentration of metal ions. Capacity measurements for eight metal ions indicated a high selectivity of the adsorbent towards Cu2+ with a capacity of 25.7 micromol per ml packed adsorbent. A factorial design was used for optimization of the effects of 5 different variables on the recovery of Cu2+. Under the optimized conditions, Cu2+ was quantitatively accumulated on a 0.25 ml packed column of the adsorbent in the pH range of 4 to 6, and simply eluted with 2 ml of a 1 mol 1(-1) hydrochloric acid solution. The column could tolerate salt concentrations up to 0.5 mol 1(-1), sample flow rates up to 15 ml min(-1), and sample volumes beyond 1000 ml. Matrix ions of Na+, Mg2+ and Ca2+ and potentially interfering ions of Ni2+, Cd2+, Zn2+, Fe3+ and Co2+ with relatively high concentrations did not show any significant effect on the analyte's signal. Preconcentration factors up to 500 and a detection limit of 0.16 microg 1(-1) were obtained for the determination of the analyte by flame AAS. Application of the method to the determination of natural and spiked copper in river water and seawater samples resulted in quantitative recoveries.  相似文献   

6.
Continuous agarose beds (monoliths) were prepared by casting agarose emulsions designed to generate superporous agarose. The gel structures obtained were transected by superpores (diameters could be varied in the range 20-200 microns) through which liquids could be pumped. The pore structure and the basic properties of the continuous gel were investigated by microscopy and size exclusion chromatography. The chromatographic behaviour was approximately the same as for beds packed with homogeneous agarose beads with a particle diameter equivalent to the distance between the superpores. In one application, the superporous continuous agarose bed was derivatized with a NAD+ analogue and used in the affinity purification of bovine lactate dehydrogenase from a crude extract. In another application, a new superporous composite gel material was prepared by adding hydroxyapatite particles to the agarose phase. The composite bed was used to separate a protein mixture by hydroxyapatite chromatography. In a third application, the continuous superporous agarose material was used as an electrophoresis gel. Here, a water-immiscible organic liquid was pumped through the superpores to dissipate the joule heat evolved, thus allowing high current densities.  相似文献   

7.
A comparison is made of the performance of two types of adsorbent solid phases (commercially sourced Streamline composites and custom-assembled Zirblast pelliculates), derivatised with similar anion exchange chemistries and applied to the recovery of plasmid DNA from Escherichia coli extracts prepared by chemical lysis and coarse filtration. Streamline and Zirblast adsorbents were characterised by average particle diameters of 200 and 95 microm, densities of 1.16 and 3.85 g/m2, and small ion capacities of 170 and 8 micromol/ml settled adsorbent, respectively. Detailed analysis of products and impurities in a full operational cycle of adsorption, washing, pre-elution, elution and regeneration processes was enabled by the harnessing of a battery of analyses for nucleic acid and organic solute content of feedstocks and bed effluents exploiting ultra-violet spectrophotometry, agarose gel electrophoresis and specific reactions with the fluorescent probe PicoGreen. In comparative tests operated under near identical conditions, Streamline and Zirblast adsorbents exhibited plasmid recoveries of 76 and 90% of bound product characterised by purity ratios (relative PicoGreen and A254 estimates of mass) of 9 and 32, respectively. Conclusions are drawn regarding the specific impact of the physical and topographical characteristics of solid-phase geometry upon product throughput, achievable product purity, process time-scales and operational economics for the manufacture of plasmid DNA.  相似文献   

8.
Steinmann L  Porath J  Hashemi P  Olin A 《Talanta》1994,41(10):1707-1713
An adsorbent for metal ions has been prepared by reacting high molecular weight polyethyleneimine (PEI) with a crosslinked and activated agarose gel, Novarose. The synthesis variables, i.e. time, temperature, pH, PEI concentration and PEI/Novarose ratio, were optimized in order to obtain a high metal binding capacity of the adsorbent. The binding capacity for Cu(2+) is 500 micromol/ml packed adsorbent. A number of properties of the adsorbent relevant for metal ion accumulation has been investigated for Cu(2+), Ni(2+), Cd(2+) and Zn(2+). Adsorption capacities, adsorption isotherms, distribution coefficients, recoveries and relative rates of accumulation were determined. The adsorbent can be used for preconcentration and for separation of interfering alkali and alkaline earth metals in analytical applications.  相似文献   

9.
The adsorption of plasmid DNA onto two different types of ceramic hydroxyapatite beads with a particle diameter of 20 μm, namely Ceramic Hydroxyapatite Type II and the Type III, which is not commercially available, were investigated. Type II and the Type III have a pore diameter of 80 and 240 nm, respectively. Equilibrium and dynamic binding capacity for a 4.9 kbp model plasmid on Ceramic Hydroxyapatite Type II and Type III were enhanced by addition of NaCl to the adsorption buffer. This result indicates that the adsorption mechanism cannot be solely explained by electrostatic interaction. The affinities of plasmid DNA for Ceramic Hydroxyapatite Type II (with a K(D) of ≈0.005 mg/mL) and to Hydroxyapatite Type III (with a K(D) of ≈0.045 mg/mL) were not affected by NaCl, whereas the binding capacity was. This observation corroborates the assumption that a change of the shape of the plasmid molecule is affected and could be the reason for increased binding capacity with salt. The maximal binding capacity shows that at least a part of the CHT II bead must be accessible for the plasmid, whereas CHT III can be saturated with the plasmid. In both cases, an extremely hindered transport takes place.  相似文献   

10.
Agarose-based anion-exchangers (e.g. quaternary amine, Q) have been widely used in monoclonal antibody flow-through purification to remove trace levels of impurities. Such media are often packed in a large column and the operation is usually robust but with limited throughput due to the compressibility of agarose and consequentially low bed permeability. In order to address this limitation, cored Q beads consisting of a rigid core and a thin agarose gel coating were developed and evaluated for protein flow-through chromatography. Using laboratory-scale columns it was found that, the cored beads indeed provide significantly enhanced rigidity and flow permeability relative to conventional homogeneous agarose resins. Depending on the structure and size of the cored beads, the permeability was 2-4-fold higher than that of a commonly used commercial agarose resin. Good virus and host cell protein clearance was achieved with the cored Q beads even at increased flow velocities. In addition, the impermeable core allows for more efficient use of buffers without loss of useful capacity in polishing applications. Process analyses based upon the experimental data demonstrated that the enhanced permeability achieved with the cored beads can significantly improve process throughput and economics.  相似文献   

11.
Two anthraquinone galactosyl-biomimetic dye-ligands comprising, as terminal biomimetic moiety, galactose analogues (1-amino-1-deoxy-beta-D-galactose and D(+)-galactosamine) were designed for the enzyme galactose oxidase (GAO), using molecular modelling, synthesized and characterized. The biomimetic ligands were immobilized on agarose beads and the affinity adsorbents, together with a non-biomimetic adsorbent bearing Cibacron Blue 3GA, were studied for their ability to purify GAO from Dactylium dendroides. Both biomimetic adsorbents showed higher purifying ability for GAO compared to the non-biomimetic adsorbent, thus demonstrating their superior effectiveness as affinity chromatography materials. In particular, the affinity adsorbent comprising, as terminal biomimetic moiety, 1-amino-1-deoxy-beta-D-galactose (BM1) exhibited the highest purifying ability for GAO. This affinity adsorbent did not bind galactose dehydrogenase, glucose dehydrogenase, alcohol dehydrogenase, or glucose oxidase. The dissociation constant (K(D)) of the immobilized BM1 ligand with GAO was found to be equal to 45.8 microM, whereas the binding capacity was equal to 709 U per ml adsorbent. Therefore, the BMI adsorbent was integrated in a facile two-step purification procedure for GAO. The purified enzyme showed a specific activity equal to 2038 U/mg, the highest reported so far, approximately 74% overall recovery and a single band after sodium dodecylsulfate-polyacrylamide gel electrophoresis analysis.  相似文献   

12.
Agarose gels were fabricated by water-in-oil emulsification with the addition of CaCO3 granules at 8–16 wt%. Thus agarose beads of different superporosities were produced after dissolving the solid porogen. The superporous agarose (SA) and homogeneous agarose gels were double cross-linked and modified with diethylaminoethyl chloride to produce anion exchangers. We have proposed to use a superporous replica (porous titania microspheres) to examine the superporous structure and pore size distribution of the soft gel. The replica was prepared with the agarose gel entrapping CaCO3 granules by a sol–gel-templating method. It was found that the superpores created by CaCO3 granules were uniformly distributed and ranged from 0.95 μm to 1.33 μm. The physical properties of the gels were significantly affected by the porogen content. Importantly, by increasing the solid porogen to 12 wt%, the bed permeability and effective porosity increased about 48% and 33%, respectively. Further increase in the porogen to 16 wt% led to a decrease of the mechanical strength. With increasing superpores in the beads, the dynamic adsorption capacity of the packed columns increased obviously at 305–916 cm/h. Besides, the column efficiency changed less with increasing flow velocity up to 1200 cm/h. It was concluded that the use of 12 wt% CaCO3 granules in agarose solution was beneficial for the fabrication of the SA gel with good mechanical stability and promising performance for protein chromatography.  相似文献   

13.
A new type of beads mill for dispersing nanoparticles into liquids has been developed. The bead mill utilizes centrifugation to separate beads from nanoparticle suspensions and allows for the use of small sized beads (i.e. 15-30 microm in diameter). The performance of the beads mill in dispersing a suspension of titanium dioxide nanoparticle with 15 nm primary particles was evaluated experimentally. Dynamic light scattering was used to measure titania particle size distributions over time during the milling process, and bead sizes in the 15-100 microm range were used. It was found that larger beads (50-100 microm) were not capable of fully dispersing nanoparticles, and particles reagglomerated after long milling times. Smaller beads (15-30 microm) were capable of dispersing nanoparticles, and a sharp peak around 15 nm in the titania size distribution was visible when smaller beads were used. Because nanoparticle collisions with smaller beads have lower impact energy, it was found by X-ray diffraction and transmission electron microscopy that changes in nanoparticle crystallinity and morphology are minimized when smaller beads are used. Furthermore, inductively-coupled plasma spectroscopy was used to determine the level of bead contamination in the nanoparticle suspension during milling, and it was found that smaller beads are less likely to fragment and contaminate nanoparticle suspensions. The new type of beads mill is capable of effectively dispersing nanoparticle suspensions and will be extremely useful in future nanoparticle research.  相似文献   

14.
Continuous superporous agarose beds in radial flow columns   总被引:5,自引:0,他引:5  
Continuous superporous agarose beds constitute a new support material for chromatography, biocatalysis and electrophoresis. The bed consists of a single piece of agarose gel, homogeneously transected by flow-carrying pores, which easily can be varied in the range of 10-100 microm. In this work, large diameter beds (60 mm) were prepared and used in specially designed radial flow columns. The basic chromatographic properties of the beds were investigated by size-exclusion chromatography experiments. In an affinity chromatography application one bed was derivatized with Cibacron Blue 3GA and used for the purification of lactate dehydrogenase from a crude bovine heart extract. In a biotransformation application one bed was provided with immobilized beta-galactosidase and used in the production of lactose-free milk.  相似文献   

15.
In this study, DNA adsorption properties of polyethylenimine (PEI)-attached poly(p-chloromethylstyrene) (PCMS) beads were investigated. Spherical beads with an average size of 186 microm were obtained by the suspension polymerization of p-chloromethylstyrene conducted in an aqueous dispersion medium. Owing to the reasonably rough character of the bead surface, PCMS beads had a specific surface area of 14.1 m2/g. PEI chains could be covalently attached onto the PCMS beads with equilibrium binding capacities up to 208 mg PEI/g beads, via a direct chemical reaction between the amine and chloromethyl groups. After PEI adsorption with 10% (w/w) initial PEI concentration, free amino content of PEI-attached PCMS beads was determined as 0.91 mequiv./g. PEI-attached PCMS beads were utilized as sorbents in DNA adsorption experiments conducted at +4 degrees C in a phosphate buffer medium of pH 7.4. DNA immobilization capacities up to 290 mg DNA/g beads could be achieved with the tried sorbents. This value was approximately 50-times higher relative to the adsorption capacities of previously examined sorbents.  相似文献   

16.
Zirconia beads (25-38 microm in diameter) were modified with N,N,N'.N'-ethylenediaminetetramethylenephosphonic acid to generate a pseudo-biospecific support, r_PEZ. To better understand the force of interaction between the IgG and the r_PEZ, the equilibrium dissociation constant (Kd) was determined by static binding isotherms, as a function of temperature and by frontal analysis at different linear velocities. Temperature had no significant impact on the maximum static binding capacity (Q(max)) and the equilibrium-binding constant (Kd), whereas pH and the salt concentration had a noticeable impact on both Q(max) and Kd values. Q(max) was found to be in the range of 55-65 mg IgG per ml of beads and unaffected by temperature. The maximum dynamic binding capacity (Qx) was found to be in the range of 20-12 mg IgG per ml of beads. The adsorption rate constant (ka) was determined by a split-peak approach to be between 982 and 32421 mol(-1) s(-1) depending on the linear velocity. Adsorption rate of IgG on r_PEZ was studied as a function of both feed concentration and linear velocity. The standard enthalpy and entropy values were estimated for the interaction of IgG with this novel support. The binding constants were also determined by modeling the batch protein-uptake data.  相似文献   

17.
18.
Hepatitis B virus surface antigen (HBsAg) particles were efficiently adsorbed (retained) on a Sulfate-cellulose (S-C) bead column, and then desorbed with sodium chloride solutions (0.5-3.0 M). The HBsAg particles were not efficiently retained onto either sulfopropyl-agarose (SP-A) or quaternary amine-agarose (Q-A) at pH 4.5, 6 and 8. The size-exclusion curve showed that proteins of molecular mass higher than ca. 20,000 cannot penetrate into the pores of S-C beads. The dynamic binding capacity (DBC) values of lysozyme (ca. 7 mg/ml-gel) and of gamma-globulin (ca. 3 mg/ml gel) for S-C did not depend on the flow velocity while the DBC of gamma-globulin for SP-A decreased sharply with an increase in flow velocity. These results indicated that very large molecules are adsorbed only onto the surface of S-C, which resulted in fast adsorption-desorption rates although the equilibrium adsorption capacity is lower than conventional porous gel beads. Because of the rapid adsorption rate, the DBC values of gamma-globulin for S-C at high flow-rate regions are similar to those for SP-A. Bovine serum albumin was not adsorbed onto S-C. As this can not be explained by a simple electrostatic interaction mechanism, molecular recognition of S-C might be different from the agarose-based ion-exchange beads.  相似文献   

19.
A common problem during recovery of bioproducts by adsorption from particulate broths is fouling of the adsorbent material as a result of the interaction of cells and cell debris, which present negative charges, with the positively charged anion exchangers commonly used in bioprocesses. The effect of shielding an adsorbent with a layer of agarose on reducing the binding of cells while still allowing the low-molecular-mass bioproducts to be adsorbed was studied. Coating the anion-exchange resin Amberlite IRA-400 with agarose followed by cross-linking the agarose layer effectively prevented the binding of Escherichia coli, Saccharomyces cerevisiae, and Lactobacillus casei cells but allowed binding of lactic acid to the adsorbent. The cross-linked agarose layer was stable during recycling of the adsorbent.  相似文献   

20.
Zirconia beads (25-38 microm in diameter) were modified with N,N,N',N'-ethylenediaminetetramethylenephosphonic acid to generate a zirconia based pseudoaffinity support, further referred to as r_PEZ. The influence of pH, salt concentration and temperature on the binding of human immunoglobulin G (hIgG) to r_PEZ was studied. Temperature had no significant impact on the maximum binding capacity (Qmax), and the equilibrium-binding constant (Kd), whereas pH and the salt concentration had a noticeable impact on both Qmax and Kd. The Qmax value of 55 mg hIgG/ml of bead was obtained at a pH of 5.5 and found to decrease with an increase of pH. The modified zirconia support allowed the separation of immunoglobulins (IgG, IgA and IgM) from untreated human serum. Elution was possible under mild conditions with a step salt gradient. Overall protein recoveries in the range of 109-125% were obtained with human serum. Human IgG, human IgA, and human IgM yields of 29.50+/-6.3, 3.22+/-0.7, and 6.84+/-0.7%, respectively, were obtained at a linear velocity of 4.32 cm/min. Purity of products, obtained from a single chromatographic step was estimated to be greater than 89.0+/-2.6%. The utility of r_PEZ in the selective removal of immunoglobulins, as in immunoadsorption was discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号