首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The separation of six-component blends of chemically similar homopolymers utilising the full adsorption-desorption (FAD) process is presented. The main advantage of the FAD approach over other methods represents the successive and independent size- exclusion chromatography (SEC) characterisation of all blend components. The method is based on the full adsorption and retention of all n or n−1 components of the polymer blend from an adsorption promoting liquid (ADSORLI) in a small FAD column. Nonadsorbed macromolecules are forwarded directly into SEC for molecular characterisation. Next, appropriate displacers are successively applied to the FAD column to selectively release preadsorbed blend constituents into the on-line SEC column. Dynamic integral desorption isotherms for single constituents, as well as for polymer blends to be analysed, allow identification of optimal displacer compositions to release just one kind of macromolecule. Model polymer blends containing polystyrene (PS), poly(lauryl methacrylate), poly(butyl methacrylate), poly(ethyl methacrylate), poly(methyl methacrylate) and poly(ethylene oxide) (PEO) or, alternatively, PS, poly(2-ethylhexyl acrylate), poly(butyl acrylate), poly(ethyl acrylate), poly(methyl acrylate) and PEO of similar molar masses can be separated and characterised in one multistep run using nonporous silica FAD packing, toluene as an ADSORLI and its mixtures with a desorption promoting liquid such as ethyl acetate, tetrahydrofuran or dimetylformamide to form displacers with appropriate desorption strength. Received: 9 September 1998 Accepted in revised form: 16 November 1998  相似文献   

2.
The analysis of a thermoplastic polymer blend requires a precise separation of the blend components, which is usually performed by selective solvent extraction. However, when the components are high‐molecular‐weight polymers, a complete separation is very difficult. The use of fluids in near critical and supercritical conditions becomes a promising alternative to reach a much more precise separation. In this work, a method to separate reactive and physical blends from high‐molecular‐weight commercial polymers is proposed. Polyethylene (PE)/polystyrene (PS) blends were separated into their components with n‐propane, n‐pentane, and n‐heptane at near critical and supercritical conditions. The selectivity of each solvent was experimentally studied over a wide range of temperatures for assessing the processing windows for the separation of pure components. The entire PE phase was solubilized by n‐pentane and n‐heptane at similar temperatures, whereas propane at supercritical conditions could not dissolve the fraction of high‐molecular‐weight PE. The influence of the blend morphology and composition on the efficiency of the polymer separation was studied. In reactive blends, the in situ copolymer formed was solubilized with the PE phase by chemical affinity. The method proposed for blend separation is easy, rapid, and selective and seems to be a promising tool for blend separation, particularly for reactive blends, for which the isolation of the copolymer is essential for characterization © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2361–2369, 2005  相似文献   

3.
In many cases, polymer adsorption is studied by measuring adsorption isotherms. Quite often it is found that the results are at variance with theoretical predictions. However, usually these adsorption isotherms are interpreted in terms of a single polymeric solute. Most polymers used in experimental studies are polydisperse and should be treated as mixtures. It is well established that the larger molecules in such mixtures adsorb preferentially over the smaller ones. In this paper we show that many discrepancies between polymer adsorption theory and experiment (e.g., the rounded shape of isotherms, the dependence of the adsorbance on adsorbent concentration, and the lack of desorption upon dilution) can be attributed to polydispersity. A quantitative analysis enables us to calculate isotherms for a polymer of arbitrary molecular weight distribution, provided the dependency of the plateau adsorbance on molecular weight is known. Experiments supporting the theory are reported. The fact that polymers do not desorb upon dilution with solvent is often regarded as a proof that polymer adsorption is irreversible. We show that, if a polydisperse sample is in equilibrium with an adsorbing surface, no detectable desorption may take place upon dilution. Therefore, the adsorption of polymers might well be reversible, even if desorption experiments would indicate apparent irreversibility.  相似文献   

4.
Surface area exclusion chromatography was used to investigate the adsorption and reconformation characteristics of hydrolyzed polyvinylamine molecules at silica/water interfaces employing radiolabeled polymers. The polymer solution was injected at the inlet of the column, whereas the polymer was successively adsorbed on the stacked glass-fiber filters constituting the stationary phase of the column. The filters and effluent samples collected at the outlet were individually analyzed for radioactivity content, which provided the adsorption histogram and the relative affinity of the various polymers. For saturated polymer layers, the relaxation process was demonstrated when the exceedingly adsorbed molecules desorbed. Modifications in the adsorption on the successive filters were thus converted into changes in the interfacial area of adsorbed molecules, taking into account the deviation from the plateau adsorption expected for nonrelaxing systems. Adsorption characteristics of nonrelaxed polymer layers were determined from the adsorption values determined before relaxation occurred. Adsorption and relaxation characteristics were determined to depend strongly on molecular weight and degree of hydrolysis of the polyvinylamine molecules. Half-hydrolyzed polymers had adsorption and relaxation characteristics close to those of the fully hydrolyzed polyvinylamine. Accordingly, adsorption isotherms on the cellulose/water interface were carried out to possibly extend the main conclusions of the study.  相似文献   

5.
The adsorbed amounts of water vapor onto polyacrylic polymer (polymer ×10) were measured using a thermogravimetry method as a function of pressure at 298 and 313 K. The adsorption isotherms are categorized to type II isotherms by IUPAC classification leading to a hysteresis loop between adsorption and desorption branches. The current study was completed by the measurement of the adsorption heats at 298 K using a differential scanning calorimetry. The calorimetric curves showed two adsorption heats domains. These domains have been attributed to the adsorption of “equivalent monolayer” and the condensation of water between polymeric chains. The correlation of experimental data to some chosen theoretical models shows that the GAB model is the most adequate to describe water vapor sorption isotherms.  相似文献   

6.
Displacement chromatography of biomolecules   总被引:1,自引:0,他引:1  
Displacement chromatography was used for the preparative-scale separation of peptides, antibiotics, and proteins. The feed components were both purified and concentrated during the separation processes. The components of a peptide mixture were separated on a reverse-phase analytical column using 2-(2-butoxyethoxy) ethanol as the displacer. The use of organic modifiers in the carrier along with an elevated column temperature of 45 degrees C enabled the efficient separation of relatively hydrophobic peptides by displacement chromatography. In addition, the throughput of the process was significantly increased by carrying out the separation at an elevated flow-rate with no adverse effect on product purity. The antibiotic cephalosporin C was isolated from impurities in a fermentation broth using 2-(2-butoxyethoxy)ethanol as the displacer along with a step change in column temperature. The proteins cytochrome c and lysozyme were purified on a weak cation-exchanger column using cationic polymers as the displacers. While polymers of 60 and 20 kilodaltons were both found to be good displacers for these proteins, only the lower molecular weight polymer was readily removed from the column by standard regeneration techniques.  相似文献   

7.
Baseline separation was achieved of a model four‐component polymer blend of polystyrene‐poly(methyl methacrylate)‐poly(ethylene oxide)‐poly(2‐vinyl pyridine) in a single chromatographic run with help of the unconventional method of liquid chromatography under limiting conditions of desorption. Narrow barriers of liquids were employed, which selectively decelerated elution of particular kinds of macromolecules. Bare silica gel was the column packing, and the eluent was a mixture of dimethylformamide/tetrahydrofuran/toluene 30:50:20 w/w/w. Barrier compositions were neat toluene, B#1, neat tetrahydrofuran, B#2, and dimethylformamide/tetrahydrofuran/toluene 15:55:30, B#3. Minor blend constituents (∼1%) could be identified, as well. The result represents a step toward the separation and molecular characterization of triblock‐copolymers, many of which are expected to contain besides both parent homopolymers also the diblock chains and thus they are in fact four‐component polymer blends.  相似文献   

8.
9.
Many liquid chromatographic (LC) separations of macromolecules are influenced or directly based on adsorption of solutes on column packing. In the case of well known size exclusion chromatography (SEC), adsorption effects are usually unwanted and therefore suppressed. Still they appear in many SEC systems and may badly affect precision of results obtained. In other LC methods applicable to high polymers, adsorption is deliberately combined with exclusion. The aim is to discriminate complex polymer systems which exhibit more than one single distribution of their molecular characteristics. The main goals of such combinations include either a controlled increase or a full suppression of separation selectivity according to one molecular characteristics. Most important so far known exclusion-adsorption compensation methods allowing to suppress dependence of LC retention volumes on polymer molar mass are reviewed. The discussion is accomplished with a presentation of newly developed full adsorption - desorption (FAD) method which can be combined with various LC procedures. A very useful combination represents the on-line FAD/SEC procedure which enables also to study adsorption and desorption phenomena in the systems solid surface - solvent - macromolecules.  相似文献   

10.
We studied the adsorption of two neutral polymers [poly(vinyl pyrrolidone) and poly(vinyl alcohol) (PVA)] on negatively charged liposomes composed of 25:2:3 (molar ratio) soy lecithin/dicetyl phosphate/cholesterol.The liposomes were prepared in buffered solution at pH 7.4 and were mixed with the solution of the polymers in the desired polymer/lipid ratios. Adsorption was measured by determination of the equilibrium bulk concentration of the polymer. Protamine hydrochloride was used to aggregate the liposomes with polymers adsorbed on their surface and to facilitate their separation from the equilibrium bulk solution. In the case of PVA, quantitative adsorption measurements with a specific reagent were possible. Adsorption isotherms were recorded at 25 ± 0.2 °C. It was concluded that adsorbed and nonadsorbed PVA molecules are in equilibrium even at low polymer/lipide ratios. The results were confirmed by dynamic laser light scattering, X-ray diffraction and thermal activity monitoring experiments. Received: 13 October 2000 Accepted: 8 March 2001  相似文献   

11.
 We have investigated a practical lower limit of a pore-size estimation by the nitrogen desorption isotherms at 77 K using the Kelvin equation. Changes in pore size of porous silica glasses before and after the monolayer preadsorption of n-propylalcohol were estimated by measuring the nitrogen adsorption and desorption isotherms. These changes should correspond to the thickness of monolayer of adsorbed n-propylalcohol. The thickness of monolayers obtained for the samples whose pore sizes are below ca. 2 nm were underestimated, when the Kelvin equation was applied to the nitrogen desorption isotherms using the values of surface tension and molar volume of bulk liquid nitrogen at 77 K. Below ca. 2 nm pore radius a careful application of the Kelvin equation is required to estimate a pore size. These results suggest that a change in the physical properties of liquid nitrogen in such a small pore occurs. It is supposed that the interaction between the solid surface and adsorbate molecules causes the changes in the surface tension and density of liquid nitrogen in such a narrow pore. Received: 21 March 1997 Accepted: 18 July 1997  相似文献   

12.
Liquid chromatography under limiting conditions of desorption (LC LCD) is a method which allows molar mass independent elution of various synthetic polymers. A narrow, slowly moving zone of small molecules, which promotes full adsorption of one kind of polymer species within column (an adsorli) acts as an impermeable barrier for the fast moving macromolecules. The latter accumulate on the barrier edge and elute nearly in total volume of liquid within column. At the same time, transport of less adsorptive macromolecules is not hampered so that these are eluted in the size exclusion (SEC) mode. As result, polymers differing in their polarity and adsorptivity can be easily separated without molar mass interference. Three methods of barrier creation are discussed and compared. It is shown that a fraction of sample may elute unretained if the adsorli sample solvent is used as a barrier in connection with a narrow-pore column packing. One part of excluded macromolecules likely breaks-out from the adsorli zone and this results in partial loss of sample and distortion of the LC LCD peaks. This problem can be avoided if the adsorli zone is injected immediately before sample solution. Applicability of the LC LCD method for polymer separation has been demonstrated with a model mixture of poly(methyl methacrylate) (adsorbing polymer) and polystyrene (non adsorbing polymer) using bare silica gel as a column packing with a combination of tetrahydrofuran (a desorption promoting liquid -a desorli) and toluene (adsorli). It has been shown that the LC LCD procedure with tandem injection allows simple and fast discrimination of polymer blend components with good repeatability and high sample recovery. For quantitative determination of molar masses of both LC LCD and SEC eluted polymers, an additional size exclusion chromatographic column can be applied either in a conventional way or in combination with a multi-angle light scattering detector. A single eluent is used in the latter column, which separates the mixed mobile phase, system peaks and the desorli zone from the polymer peaks so that measurements are free from disturbances caused by the changing eluent composition. The resulting LC LCD x SEC procedure has been successfully applied to poly(methyl methacrylate) samples.  相似文献   

13.
Optical properties of polymer/fullerene blend films upon thermal annealing are investigated by spectroscopic ellipsometry and described consistently within an optical model of the blend film. The optical model developed in this work treats both components, polymer and fullerene, as mixtures of reference materials, that is, their optically ordered and disordered phase. Then, the polymer/fullerene blend layer is also described as a mixture of these two components. In this manner, we extend an existing optical model, which accounts for the optical order within the polymer phases, on cases where the optically ordered PCBM phase occurs, too. Determination of the dielectric functions of all four reference materials allows for a unique quantitative characterization of a polymer/fullerene blend film by assigning to it thickness and the polymer to fullerene volume fraction of its layers as well as corresponding volume fractions of theirs optically ordered and disordered polymer and fullerene phases. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 1094–1100  相似文献   

14.
The blending of a precursor polymer for poly(p‐phenylene benzobisthiazole) (PBZT) with various matrix polymers was attempted, followed by heat conversion of the PBZT precursor polymer to obtain molecular composites consisting of PBZT and the matrix polymers. A higher concentration of mixed solution using organic solvent and milder conditions to remove the solvent could be applied to blend the polymers using the precursor polymer in place of rodlike PBZT. The dispersibility of PBZT in the matrix polymer in the blended materials obtained depended on the ability to form intermolecular hydrogen bridges between the PBZT precursor and the matrix polymer. In particular, the blended material, obtained using a nonthermoplastic aromatic polyamide as the matrix polymer having a molecular structure similar to that of the PBZT prepolymer, was transparent and showed excellent reinforcing efficiency of PBZT. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 189–197, 1999  相似文献   

15.
The thickness of films of poly(methyl methacrylate) (PMMA), poly(vinyl acetate) (PVAc), and polystyrene (PS) adsorbed on Pyrex glass was studied by measuring the flow rates of polymer solutions and the corresponding pure solvents through sintered filter disks. Adsorption isotherms were in agreement with those reported by other workers and showed saturation adsorption equivalent to 2–8 condensed monolayers of monomer units. Film thicknesses were of the order of magnitude of the free coil diameters in solution and were directly proportional to the intrinsic viscosity of the polymer, except for PS in benzene where the thicknesses leveled off as molecular weight increased. It was concluded that polymers adsorb from solution in monolayers of compressed or interpenetrating coils; that below some critical molecular weight which varies with polymer and solvent, a much larger fraction of the segments lies directly in the interface; that adsorbed films may consist of a dense layer immediately adjacent to the surface and a deep layer of loops extending into the solvent; and that it is the segment—solvent interaction rather than the segment—surface interaction which dominates the conformation of the adsorbed chain.  相似文献   

16.
The directionality (Dn) of a polymerization mechanism can be defined as the average orientation of the reaction or the degree of randomness of head-to-tail, head-to-head, tail-to-tail or tail-to-head reactions within the polymer at the n-th monomer or reaction (n ≫ 2). Directionality of a polymer type can be defined as the average orientation inside a polymer. If the directionality is random, Dn = 0.5. For full directionality, Dn = 1. It is demonstrated that these situations correspond to step and chain polymerization, respectively. Directionality can be as important for the functional properties of polymers as length and composition distributions and the functionality of the original monomers.  相似文献   

17.
The analysis of synthetic polymers represents today an important part of polymer science to determine their physical properties and to optimize the performance of polymeric materials for block copolymers as well as blend systems. The characterization can easily and rapidly be performed by mass spectrometry. In particular, the film formation of a synthetic polymer is of interest in material research and quality control, which can be determined by employing mass spectrometric imaging (MSI) using secondary ion mass spectrometry (SIMS) or matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. MALDI-MSI has been rapidly improved for the analysis of tissue cross-sections due to its soft ionization and accessible m/z range, which both also play an important role in polymer science. On the other hand, SIMS-MSI enables a sub-micrometer molecular spatial resolution, which is limited in MALDI-MSI due to the spatial resolution capabilities of the laser desorption process. The aim of the present contribution is to summarize recent advances in both imaging techniques for the analysis of synthetic polymers and to highlight their capabilities to correlate several imaging modalities in future applications.  相似文献   

18.
The forces and viscosity between calcium benzene sulfonate surfactant-coated mica surfaces in various hydrocarbon liquids containing a polyamine-functionalized hydrocarbon polymer (M W≈8000) have been measured using the surface forces apparatus technique. The polymer is found to adsorb to the substrate surfaces by displacing the surfactant layer, and to produce forces that are monotonically repulsive. The forces have a maximum range of 50–100 nm (>3R H), indicating that tails play a particularly important role in the interaction of this relatively low molecular weight polymer. The forces become steeply repulsive below about 10 nm (∼0.6R H), at which point a “hard-wall” repulsion comes in that can sustain pressures greater than 100 atm. Thin-film viscosity measurements indicate that the far-field positions of the slipping planes ΔH depend on the shear rate, showing that significant shear thinning/thickening effects occur within the outermost tail regions of the adsorbed layers during shear. The position of the slipping plane, or hydrodynamic layer thickness ΔH, varies from 0.6R H to 2R H away from each surface (mica and surfactant-coated mica surfaces). Beyond the hydrodynamic layer the far-field fluid viscosity is the same as that of the bulk polymer solution. At separations below D = 2ΔH the viscosity increases as each polymer layer is compressed. The static forces exhibited various time- and history-dependent effects, which further indicate that a number of different relaxation/equilibration processes are operating simultaneously in this complex multicomponent system. The results reveal that the interactions of tails of functionally adsorbed polymers play a more important role than previously thought. This is especially true in this study where the adsorbed polymers are of low molecular weight and where the tails may represent the largest fraction of interacting segments. Received: 22 September 1998 Accepted: 11 January 1999  相似文献   

19.
A novel thermal desorption technique using a direct-probe device (Chromatoprobe) attached to a gas chromatograph–mass spectrometer is presented for the thermal pretreatment, characterisation and analysis of molecularly imprinted polymers. The technique is demonstrated as effective for the removal of volatile materials, including template and unreacted monomers, from methacrylic acid–ethylene glycol dimethacrylate copolymers imprinted with 2-aminopyridine. Mass spectrometry is a powerful technique for polymer bleed characterisation. Thermal desorption studies on reloaded template and related compounds are reported as a means of assessing polymer morphology, specific binding by imprinted polymers compared with reference non-imprinted polymers and selective binding by an imprinted polymer for its template. Calibration studies on the thermal desorption technique using an internal standard are presented with R 2 > 0.999. The technique provides a novel method for assessment of polymer thermal stability, composition and morphology.  相似文献   

20.
Propane and n-butane sorption in blends of poly(1-trimethylsilyl-1-propyne) (PTMSP) and poly(1-phenyl-1-propyne) (PPP) have been determined. Solubilities of propane and n-butane increased as the PTMSP content in the blends increased. This result is consistent with the higher free volume of PTMSP-rich blends and the better thermodynamic compatibility between PTMSP and these hydrocarbons. Propane and n-butane sorption isotherms were well described by the dual-mode model for sorption in glassy polymers. PTMSP/PPP blends are strongly phase-separated, heterogeneous materials. A noninteracting domain model developed for sorption in phase-separated glassy polymer blends suggests that sorption in the Henry's law regions (i.e., the equilibrium, dense phase of the blends) is consistent with the model. However, Langmuir capacity parameters in the blends are lower than predicted from the domain model, suggesting that the amount of nonequilibrium excess free volume associated with the Langmuir sites depends on blend composition. © 1996 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号