首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 797 毫秒
1.
Recent experimental work carried out in this laboratory on the ultrafast dynamics of myoglobin (Mb) is summarized with a stress on structural and vibrational energy relaxation. Studies on the structural relaxation of Mb following CO photolysis revealed that the structural change of heme itself, caused by CO photodissociation, is completed within the instrumental response time of the time-resolved resonance Raman apparatus used (approximately 2 ps). In contrast, changes in the intensity and frequency of the iron-histidine (Fe-His) stretching mode upon dissociation of the trans ligand were found to occur in the picosecond regime. The Fe-His band is absent for the CO-bound form, and its appearance upon photodissociation was not instantaneous, in contrast with that observed in the vibrational modes of heme, suggesting appreciable time evolution of the Fe displacement from the heme plane. The band position of the Fe-His stretching mode changed with a time constant of about 100 ps, indicating that tertiary structural changes of the protein occurred in a 100-ps range. Temporal changes of the anti-Stokes Raman intensity of the v4 and v7 bands demonstrated immediate generation of vibrationally excited heme upon the photodissociation and decay of the excited populations, whose time constants were 1.1 +/- 0.6 and 1.9 +/- 0.6 ps, respectively. In addition, the development of the time-resolved resonance Raman apparatus and prospects in this research field are described.  相似文献   

2.
The temporally overlapping, ultrafast electronic and vibrational dynamics of a model five-coordinate, high-spin heme in a nominally isotropic solvent environment has been studied for the first time with three complementary ultrafast techniques: transient absorption, time-resolved resonance Raman Stokes, and time-resolved resonance Raman anti-Stokes spectroscopies. Vibrational dynamics associated with an evolving ground-state species dominate the observations. Excitation into the blue side of the Soret band led to very rapid S2 --> S1 decay (sub-100 fs), followed by somewhat slower (800 fs) S1 --> S0 nonradiative decay. The initial vibrationally excited, non-Boltzmann S0 state was modeled as shifted to lower energy by 300 cm(-1) and broadened by 20%. On a approximately 10 ps time scale, the S0 state evolved into its room-temperature, thermal distribution S0 profile largely through VER. Anti-Stokes signals disappear very rapidly, indicating that the vibrational energy redistributes internally in about 1-3 ps from the initial accepting modes associated with S1 --> S0 internal conversion to the rest of the macrocycle. Comparisons of anti-Stokes mode intensities and lifetimes from TRARRS studies in which the initial excited state was prepared by ligand photolysis [Mizutani, T.; Kitagawa, T. Science 1997, 278, 443, and Chem. Rec. 2001, 1, 258] suggest that, while transient absorption studies appear to be relatively insensitive to initial preparation of the electronic excited state, the subsequent vibrational dynamics are not. Direct, time-resolved evaluation of vibrational lifetimes provides insight into fast internal conversion in hemes and the pathways of subsequent vibrational energy flow in the ground state. The overall similarity of the model heme electronic dynamics to those of biological systems may be a sign that the protein's influence upon the dynamics of the heme active site is rather subtle.  相似文献   

3.
The time scale and mechanism of vibrational energy relaxation of the heme moiety in myoglobin was studied using molecular dynamics simulation. Five different solvent models, including normal water, heavy water, normal glycerol, deuterated glycerol and a nonpolar solvent, and two forms of the heme, one native and one lacking acidic side chains, were studied. Structural alteration of the protein was observed in native myoglobin glycerol solution and native myoglobin water solution. The single-exponential decay of the excess kinetic energy of the heme following ligand photolysis was observed in all systems studied. The relaxation rate depends on the solvent used. However, this dependence cannot be explained using bulk transport properties of the solvent including macroscopic thermal diffusion. The rate and mechanism of heme cooling depends upon the detailed microscopic interaction between the heme and solvent. Three intermolecular energy transfer mechanisms were considered: (i) energy transfer mediated by hydrogen bonds, (ii) direct vibration-vibration energy transfer via resonant interaction, and (iii) energy transfer via vibration-translation or vibration-rotation interaction, or in other words, thermal collision. The hydrogen bond interaction and vibration-vibration interaction between the heme and solvent molecules dominates the energy transfer in native myoglobin aqueous solution and native myoglobin glycerol solutions. For modified myoglobin, the vibration-vibration interaction is also effective in glycerol solution, different from aqueous solution. Thermal collisions form the dominant energy transfer pathway for modified myoglobin in water solution, and for both native myoglobin and modified myoglobin in a nonpolar environment. For native myoglobin in a nonpolar solvent solution, hydrogen bonds between heme isopropionate side chains and nearby protein residues, absent in the modified myoglobin nonpolar solvent solution, are key interactions influencing the relaxation pathways.  相似文献   

4.
Picosecond time-resolved Stokes and anti-Stokes resonance Raman spectra of all-trans-beta-carotene are obtained and analyzed to reveal the dynamics of excited-state (S(1)) population and decay, as well as ground-state vibrational relaxation. Time-resolved Stokes spectra show that the ground state recovers with a 12.6 ps time constant, in agreement with the observed decay of the unique S(1) Stokes bands. The anti-Stokes spectra exhibit no peaks attributable to the S(1) (2A(g) (-)) state, indicating that vibrational relaxation in S(1) must be nearly complete within 2 ps. After photoexcitation there is a large increase in anti-Stokes scattering from ground-state modes that are vibrationally excited through internal conversion. The anti-Stokes data are fit to a kinetic scheme in which the C=C mode relaxes in 0.7 ps, the C-C mode relaxes in 5.4 ps and the C-CH(3) mode relaxes in 12.1 ps. These results are consistent with a model for S(1)-S(0) internal conversion in which the C=C mode is the primary acceptor, the C-C mode is a minor acceptor, and the C-CH(3) mode is excited via intramolecular vibrational energy redistribution.  相似文献   

5.
The incipient structural and vibrational energy relaxation process of photolyzed carbonmonoxy myoglobin was analyzed by the perturbation ensemble molecular dynamics (PEMD) method, in which many pairs of perturbed and unperturbed MD simulations are executed for ensemble-averaging to obtain statistically significant results by canceling out thermal fluctuations. First, we have shown that the experimentally reported anisotropic expansion can be detected within a picosecond after photolysis. The good agreement between the experimental and computational results indicates that the PEMD method can predict legitimately those changes driven by perturbations even if the changes might be subtle and smaller than thermal fluctuations. Second, the structural relaxation including the ??clamshell rotation?? in E and F helices was successfully analyzed. The high time resolution analysis has clarified the incipient structural dynamics on a subpicosecond timescale: the clamshell rotation starts at His64, Val68, and His93 following both the heme doming and the dissociated CO ligand collision. Third, the vibrational energy relaxation from the heme to the globin matrix is elucidated not only temporally but also spatially. This is the first ??thorough?? report of the spacetime-resolved excess kinetic energy redistribution of photolyzed MbCO in the globin matrix with a statistically significant precision, ±1?K. The incipient anisotropic vibrational relaxation occurs clearly within a picosecond in the direction perpendicular to the heme plane by the ??through-bond?? and ??through-projectile?? pathways, and the isotropic relaxation then follows by the ??through-space?? pathway. Finally, it is concluded that the PEMD method is a powerful tool to understand the incipient relaxation process driven by the perturbation.  相似文献   

6.
New, reconstituted horse heart myoglobins possessing a hydrophobic domain at the terminal of the two heme propionate side chains were constructed. The O2 and CO bindings for the reconstituted deoxymyoglobins were examined in detail by laser flash photolysis and stopped-flow rapid mixing techniques. The artificially created domain worked as a barrier against exogenous ligand penetration into the heme pocket, whereas the bound O2 was stabilized in the reconstituted myoglobin as well as in the native one. In contrast, the CO dissociation rate for the reconstituted myoglobin increased by 20-fold compared to the native protein, suggesting that the incorporation of the hydrophobic domain onto the heme pocket perturbs the distal-site structure of the reconstituted myoglobin. As a result, the substantial ligand selectivity for the reconstituted myoglobin significantly increases in favor of O2 over CO with the M' value (= KCO/KO2) of 0.88, whereas, to the best of our knowledge, there is no myoglobin mutant in which the O2 affinity exceeds the CO one. The present work concludes that the O2 selectivity of myoglobin over CO is markedly improved by chemically modifying the heme propionates without any mutation of the amino acid residues in the distal site.  相似文献   

7.
A series of poly(aryl ether) dendrimer chloroiron(III) porphyrin complexes (LnTPP)Fe(III)Cl (number of aryl layers [n]=3 to 5) were synthesized, and their Boltzmann temperatures under IR irradiation were evaluated from ratios of Stokes to anti-Stokes intensities of resonance Raman bands. While the Boltzmann temperature of neat solvent was unaltered by IR irradiation (LnTPP)Fe(III)Cl (n=3 to 5), all showed a temperature rise that was larger than that of the solvent and greater as the dendrimer framework was larger. Among vibrational modes of the metalloporphyrin core, the temperature rise of an axial Fe-Cl stretching mode at 355 cm-1 was larger than that for a porphyrin in-plane mode at 390 cm-1. Although most of the IR energy is captured by the phenyl nu8 mode at 1597 cm-1 of the dendrimer framework, an anti-Stokes Raman band of the phenyl nu8 mode was not detected, suggesting the extremely fast vibrational relaxation of the phenyl mode. From these observations, it is proposed that the energy of IR photons captured by the aryl dendrimer framework is transferred to the axial Fe-Cl bond of the iron porphyrin core and then relaxed to the porphyrin macrocycle.  相似文献   

8.
Studies of vibrational energy flow in various polar and nonpolar molecules that follows the ultrafast excitation of the CH and OH stretch fundamentals, modeled using semiclassical methods, are reviewed. Relaxation rates are calculated using Landau-Teller theory and a time-dependent method, both of which consider a quantum mechanical solute molecule coupled to a classical bath of solvent molecules. A wide range of decay rates are observed, ranging from 1 ps for neat methanol to 50 ps for neat bromoform. In order to understand the flow rates, it is argued that an understanding of the subtle mixing between the solute eigenstates is needed and that solute anharmonicities are critical to facilitating condensed phase vibrational relaxation. The solvent-assisted shifts of the solute vibrational energy levels are seen to play a critical role of enhancing or decreasing lifetimes.  相似文献   

9.
Sperm whale myoglobin, an oxygen storage hemoprotein, was successfully reconstituted with the iron porphycene having two propionates, 2,7-diethyl-3,6,12,17-tetramethyl-13,16-bis(carboxyethyl)porphycenatoiron. The physicochemical properties and ligand bindings of the reconstituted myoglobin were investigated. The ferric reconstituted myoglobin shows the remarkable stability against acid denaturation and only a low-spin characteristic in its EPR spectrum. The Fe(III)/Fe(II) redox potential (-190 mV vs NHE) determined by the spectroelectrochemical measurements was much lower than that of the wild-type. These results can be attributed to the strong coordination of His93 to the porphycene iron, which is induced by the nature of the porphycene ring symmetry. The O2 affinity of the ferrous reconstituted myoglobin is 2600-fold higher than that of the wild-type, mainly due to the decrease in the O2 dissociation rate, whereas the CO affinity is not so significantly enhanced. As a result, the O2 affinity of the reconstituted myoglobin exceeds its CO affinity (M' = K(CO)/K(O2) < 1). The ligand binding studies on H64A mutants support the fact that the slow O2 dissociation of the reconstituted myoglobin is primarily caused by the stabilization of the Fe-O2 sigma-bonding. The IR spectra for the carbon monoxide (CO) complex of the reconstituted myoglobin suggest several structural and/or electrostatic conformations of the Fe-C-O bond, but this is not directly correlated with the CO dissociation rate. The high O2 affinity and the unique characteristics of the myoglobin with the iron porphycene indicate that reconstitution with a synthesized heme is a useful method not only to understand the physiological function of myoglobin but also to create a tailor-made function on the protein.  相似文献   

10.
The excited‐state dynamics of ferric cytochrome c (Cyt c), an important electron‐transfer heme protein, in acidic to alkaline medium and in its unfolded form are investigated by using femtosecond pump–probe spectroscopy, exciting the heme and Tryptophan (Trp) to understand the electronic, vibrational, and conformational relaxation of the heme. At 390 nm excitation, the electronic relaxation of heme is found to be ≈150 fs at different pH values, increasing to 480 fs in the unfolded form. Multistep vibrational relaxation dynamics of the heme, including fast and slow processes, are observed at pH 7. However, in the unfolded form and at pH 2 and 11, fast phases of vibrational relaxation dominate, revealing the energy dissipation occurring through the covalent bond interaction between the heme and the nearest amino acids. A significant shortening of the excited‐state lifetime of Trp is observed at various pH values at 280 nm excitation due to resonance energy transfer to the heme. The longer time constant (25 ps) observed in the unfolded form is attributed to a complete global conformational relaxation of Cyt c.  相似文献   

11.
Spectrally dispersed femtosecond time-resolved coherent anti-Stokes Raman spectroscopy is utilized to study the ultrafast vibrational dynamics in rhodamine B dye in solution at room temperature. The anti-Stokes intensities are monitored as a function of time and wavenumber. By simply changing the timing of laser pulses, the vibrational dynamics of excited Raman transitions in rhodamine B molecules can be tracked and detected.  相似文献   

12.
Molecular dynamics simulations are used in conjunction with Landau-Teller, fluctuating Landau-Teller, and time-dependent perturbation theories to investigate energy flow out of various vibrational states of liquid CHBr3 and CDBr3. The CH stretch overtone is found to relax with a time scale of about 1 ps compared to the 50 ps rate for the fundamental. The relaxation pathways and rates for the CD stretch decay in CDBr3 are computed in order to understand the changes arising from deuteration. While the computed relaxation rate agrees well with experiments, the pathway is found to be more complex than anticipated. In addition to the above channels for CH(D) stretch relaxation that involve only the hindered translations and rotations of the solvent, routes involving off-resonant and resonant excitations of solvent vibrational modes are also examined. Finally, the decay of energy from low frequency states to near-lying solute states and solvent vibrations are studied.  相似文献   

13.
The fifth order contributions to the signals of ultrafast infrared spectrally resolved stimulated vibrational echoes at high intensities have been investigated in carbonmonoxy heme proteins. High intensities are often required to obtain good data. Intensity dependent measurements are presented on hemoglobin-CO (Hb-CO) and a mutant of myoglobin, H64V-CO. The spectrally resolved vibrational echoes demonstrate that fifth order effects arise at both the 1-0 and the 2-1 emission frequencies of the stretching mode of the CO chromophore bound at the active site of heme proteins. Unlike one-dimensional experiments, in which the signal is integrated over all emission frequencies, spectrally resolving the signal shows that the fifth order contributions have a much more pronounced influence on the 2-1 transition than on the 1-0 transition. By spectrally isolating the 1-0 transition, the influence of fifth order contributions to vibrational echo data can be substantially reduced. Analysis of fifth order Feynman diagrams that contribute in the vibrational echo phase-matched direction demonstrates the reason for the greater influence of fifth order processes on the 1-2 transition, and that the fifth order contributions are heterodyne amplified by the third order signal. Finally, it is shown that the anharmonic oscillations in vibrational echo data of Hb-CO that previous work had attributed strictly to fifth order effects arise even without fifth order contributions.  相似文献   

14.
Cytochrome c (Cyt c) is a heme protein involved in electron transfer and also in apoptosis. Its heme iron is bisaxially ligated to histidine and methionine side chains and both ferric and ferrous redox states are physiologically relevant, as well as a ligand exchange between internal residue and external diatomic molecule. The photodissociation of internal axial ligand was observed for several ferrous heme proteins including Cyt c, but no time-resolved studies have been reported on ferric Cyt c. To investigate how the oxidation state of the heme influences the primary photoprocesses, we performed a comprehensive comparative study on horse heart Cyt c by subpicosecond time-resolved resonance Raman and femtosecond transient absorption spectroscopy. We found that in ferric Cyt c, in contrast to ferrous Cyt c, the photodissociation of an internal ligand does not take place, and relaxation dynamics is dominated by vibrational cooling in the ground electronic state of the heme. The intermolecular vibrational energy transfer was found to proceed in a single phase with a temperature decay of approximately 7 ps in both ferric and ferrous Cyt c. For ferrous Cyt c, the instantaneous photodissociation of the methionine side chain from the heme iron is the dominant event, and its rebinding proceeds in two phases, with time constants of approximately 5 and approximately 16 ps. A mechanism of this process is discussed, and the difference in photoinduced coordination behavior between ferric and ferrous Cyt c is explained by an involvement of the excited electronic state coupled with conformational relaxation of the heme.  相似文献   

15.
The vibrational energy relaxation rates of the liquid nitrogenCO system have been measured by optically pumping the collision-induced fundamental vibrational absorption band of liquid N2 with the output of an HBr TEA laser. A radiatively dominated value of 56 ± 10 s is found for the intrinsic nitrogen relaxation time. The CO contribution to the decay rate is explained on the basis of a simple kinetic model and found also to be radiatively dominated at low CO concentrations. The importance of radiative trapping and energy transport in evaluating the lifetimes is demonstrated.  相似文献   

16.
H64D myoglobin mutant was reconstituted with two different types of synthetic hemes that have aromatic rings and a carboxylate‐based cluster attached to the terminus of one or both of the heme‐propionate moieties, thereby forming a “single‐winged cofactor” and “double‐winged cofactor,” respectively. The reconstituted mutant myoglobins have smaller Km values with respect to 2‐methoxyphenol oxidation activity relative to the parent mutant with native heme. This suggests that the attached moiety functions as a substrate‐binding domain. However, the kcat value of the mutant myoglobin with the double‐winged cofactor is much lower than that of the mutant with the native heme. In contrast, the mutant reconstituted with the single‐winged cofactor has a larger kcat value, thereby resulting in overall catalytic activity that is essentially equivalent to that of the native horseradish peroxidase. Enhanced peroxygenase activity was also observed for the mutant myoglobin with the single‐winged cofactor, thus indicating that introduction of an artificial substrate‐binding domain at only one of the heme propionates in the H64D mutant is the optimal engineering strategy for improving the peroxidase activity of myoglobin.  相似文献   

17.
Cytochrome c oxidase, the key bioenergetic protein, was studied by femtosecond absorption spectroscopy. Time-resolved spectral characteristics of the difference spectra recorded in the timescale from 80 fs to 20 ps were analyzed. Electronic relaxation of the excitation energy in heme a occurs in three successive steps. After completion of these steps, heme a is in the excited vibrational state of the ground state. Vibrational relaxation, cooling of the heme, occurs for several picoseconds.  相似文献   

18.
A supramolecular conjugate of myoglobin (Mb) and water‐soluble poly(acrylate), (PA5k and PA25k, where 5k and 25k represent the molecular weight of the polymers, respectively), is constructed on the basis of a noncovalent heme‐heme pocket interaction. The modified heme with an amino group linked to the terminus of one of the heme‐propionates is coupled to the side‐chain carboxyl groups of poly(acrylate) activated by N‐hydroxysuccinimide. The ratios of the heme‐modified monomer unit and the unmodified monomer unit (m:n) in the polymer chains of Heme‐PA5k and Heme‐PA25k were determined to be 4.5:95.5 and 3.1:96.9, respectively. Subsequent addition of apoMb to the conjugated polymers provides Mb‐connected fibrous nanostructures confirmed by atomic force microscopy. A mixture of the heme‐modified polymer and dimeric apomyoglobin as a cross‐linker forms a microgel in which the reconstituted myoglobin retains its native exogenous ligand binding activity.  相似文献   

19.
The development of a time-resolved coherent anti-Stokes Raman scattering (CARS) variant for use as a probe of excited electronic state Raman-active modes following excitation with an ultrafast pump pulse is detailed. Application of this technique involves a combination of broadband fs-time scale pulses and a narrowband pulse of ps duration that allows multiplexed detection of the CARS signal, permitting direct observation of molecular Raman frequencies and intensities with time resolution dictated by the broadband pulses. Thus, this nonlinear optical probe, designated fs/ps CARS, is suitable for observation of Raman spectral evolution following excitation with a pump pulse. Because of the spatial separation of the CARS output signal relative to the three input beams inherent in a folded BOXCARS arrangement, this technique is particularly amenable to probing low-frequency vibrational modes, which play a significant role in accepting vibrational energy during intramolecular vibrational energy redistribution within electronically excited states. Additionally, this spatial separation allows discrimination against strong fluorescence signal, as demonstrated in the case of rhodamine 6G.  相似文献   

20.
The non-exponential fluorescence decay of pyrene is assigned to incomplete vibrational relaxation in the first excited singlet state. The increasing rate of this fluorescence decay with increasing vibrational energy is mainly attributed to an increase of the intersystem-crossing rate and to a smaller extent to a temperature dependence of the radiative rate constant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号