首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple, sensitive and selective method for the determination of bromide in seawater by using a flow injection/stopped-flow detection technique was examined. The detection system was developed for a new kinetic-spectrophotometric determination of bromide in the presence of chloride matrix without any extraction and/or separation. The detection was based on the kinetic effect of bromide on the oxidation of methylene blue (MB) with hydrogen peroxide in a strongly acidic solution. Large amounts of chloride could enhance the sensitivity of the method as an activator. The decolorisation of the blue color of MB was used for the spectrophotometric determination of bromide at 746 nm. A stopped-flow approach was used to improve the sensitivity of the measurement and provide good linearity of the calibration over the range of 0-3.2 μg ml−1 of bromide. The relative standard deviation was 0.74% for the determination of 2.4 μg ml−1 bromide (n = 5). The detection limit (3σ) was 0.1 μg ml−1 with a sampling frequency of 12 h−1. The influence of potential interfering ions was studied. The proposed method was applied to the determination of bromide in seawater samples and provided satisfactory results.  相似文献   

2.
A simple flow-based procedure with chemiluminescence (CL) detection is proposed for bromide ion determination in seawater. The procedure was based on the oxidation of bromide to bromine by chloramine-T followed by the reaction of bromine with luminol resulting in CL emission. Since no significant reaction within chloramine-T and luminol was observed, the detection was carried out without bromine extraction from the oxidant medium. The proposed flow system had a sampling rate of 40 determinations per hour, reagents consumption of 100 μg luminol and 60 μg chloramine-T per determination, a limit of detection of 0.5 mg l−1 bromide ions, a linear concentration range (r = 0.999 and n = 7) between 0 and 100 mg l−1, and a coefficient of variance better than 2.5% (for 10 measurements of a 10 mg l−1 Br solution) were achieved. The analytical system was applied for the determination of bromide in seawater and estuarine-water samples, obtaining an analyte recovery ranging from 94 to 102% and comparing the results with a reference spectrophotometric method no significant difference was observed in 95% confidence level.  相似文献   

3.
The enthalpies of solution of l-histidine in water at 288.15-318.15 K and 0.003-0.15 mol kg−1 were measured. The enthalpies of solution were found to be independent of the solute molality up to ∼0.1 mol kg−1. Standard enthalpies and heat capacities of solution were computed. Free energies and entropies of solution have been estimated in the temperature range studied using literature solubility data and the results of the present study. The temperature increase was found to result in a pronounced rise of the l-histidine solubility due to the significant increase of the TΔS values. The characteristic temperatures for the thermodynamic properties of histidine aqueous solutions were estimated.  相似文献   

4.
Two highly sensitive chemiluminescence (CL) systems are described. The method is based on the CL generated during the oxidation of luminol by N-bromosuccinimide (NBS) and N-chlorosuccinimide (NCS) in alkaline medium. The emission intensity is reduced by the presence of some surfactants at concentrations lower than critical micelle concentration (cmc).A new, simple, rapid and selective flow injection CL method for the determination of cationic surfactants such as dodecyltrimethylammonium bromide (DTAB), cetyltrimethylammonium bromide (CTAB) and cetylpyridinium chloride (CPC) is proposed. Their determinations are based on the reducing effect on the emission intensity of NBS-luminol and NCS-luminol chemiluminescent reactions. The effect of analytical and flow injection analysis (FIA) variables on these CL systems and on the determination of the cationic surfactants are discussed. The optimum parameters for the determination of cationic surfactants were studied and were found to be the following: luminol, 1×10−6 M; NBS and NCS both, 5×10−2 M; NaOH, 5×10−2 M and flow rate, 3.5 ml min−1.  相似文献   

5.
A flow injection analysis (FIA) method for the determination of peroxide value (PV) in edible oils is described. Oil sample (undiluted) and KI reagent were aspirated into a homemade reaction chamber where the redox reaction between iodide in the aqueous phase and hydroperoxides in the oil was effected by applying a short (typically 30 s) vortex action. After allowing for the emulsified oil phase to be separated from the aqueous phase (bottom layer), an aliquot of the aqueous phase containing triiodide was next aspirated to the surface of a triiodide-selective membrane for detection. The optimized FIA procedure is linear over 0.35-28.0 PV (mequiv. O2/kg) with a detection limit of 0.32 PV. Exhibiting good reproducibility (R.S.D. of 2.7% (n = 8) for the determination of 1.1 PV) and sampling rate of 80 samples h−1, the proposed method, unlike previous FIA procedures, completely eliminated the use of organic solvents (except the use of 2-propanol for cleaning of reaction chamber). Excellent correlation (R2 = 0.9949) between the proposed method and the manual official AOCS method was found when applied to the determination of PV in diverse type of edible oils (n = 20).  相似文献   

6.
A simple, rapid, and efficient method, based on surfactant assisted dispersive liquid-liquid microextraction (SA-DLLME), followed by high performance liquid chromatography (HPLC) has been developed for the extraction and determination of chlorophenols as model compounds in environmental water samples. A conventional cationic surfactant called cethyltrimethyl ammonium bromide (CTAB) was used as a disperser agent in the proposed approach. Thirty-five microliter of 1-octanol as an extraction solvent was injected rapidly into 11 mL aqueous sample containing 0.09 mmol L−1 of CTAB, the mixture was then shaken for 3 min to disperse the organic phase. Having the extraction procedure been completed, the mixture was centrifuged and 20 μL of collected phase was injected into HPLC for subsequent analysis. Some parameters such as the type and volume of the extraction solvent, the type and concentration of surfactant, pH, ionic strength, shaking time, extraction temperature and centrifugation time were optimized. The preconcentration factors (PFs) in a range of 187-353 were obtained under the optimum conditions. The linear range, detection limit (S/N = 3), and precision (n = 5) were 0.2-200, 0.1 μg L−1, and 4.7-6.9%, respectively. Tap water, sea water and mineral water samples were successfully analyzed for the existence of chlorophenols using the proposed method.  相似文献   

7.
The solubility and molar absorptivity of trans- and cis-resveratrol isomers in aqueous solvents are poorly described. This study aimed to develop and describe a new simple method for the determination of trans- and cis-resveratrol concentrations in aqueous solutions. Up to 300 μM trans-resveratrol was dissolved in water by sonication for 2 h. Cis-resveratrol was obtained by exposing a 100-μM trans-resveratrol aqueous solution to sunlight for 8 h, followed by HPLC separation and analysis by mass spectrometry (resveratrol oxidation products were absent). Accurate values for UV absorbance in water were ελmax=ε304 nm=30 335 M−1 cm−1, ?286 nm = 23 400 M−1 cm−1 for trans-resveratrol and ελmax=ε286 nm=14 986 M−1 cm−1, ?304 nm = 9515 M−1 cm−1 for cis-resveratrol. These values allowed us to propose formulae to assess the trans-/cis-resveratrol ratio in water, using a simple and reliable UV-vis spectrophotometric method. Statistical analysis revealed no significant difference between our UV method and the commonly used HPLC method. All these data are transferable to 150 mM NaCl and 10 mM phosphate buffer solutions, which could be particularly useful for cell culture, ex vivo and in vivo studies.  相似文献   

8.
A three-phase hollow fiber liquid-phase microextraction (HF-LPME) coupled either with capillary electrophoresis (CE) or high performance liquid chromatography (HPLC) with UV detection methods was successfully developed for the determination of trace levels of the anti-diabetic drug, rosiglitazone (ROSI) in biological fluids. The analyte was extracted into dihexyl ether that was immobilized in the wall pores of a porous hollow fiber from 10 mL of aqueous sample, pH 9.5 (donor phase), and was back extracted into the acceptor phase that contained 0.1 M HCl located in the lumen of the hollow fiber. Parameters affecting the extraction process such as type of extraction solvent, HCl concentration, donor phase pH, extraction time, stirring speed, and salt addition were studied and optimized. Under the optimized conditions (extraction solvent, dihexyl ether; donor phase pH, 9.5; acceptor phase, 0.1 M HCl; stirring speed, 600 rpm; extraction time, 30 min; without addition of salt), enrichment factor of 280 was obtained. Good linearity and correlation coefficients of the analyte was obtained over the concentration ranges of 1.0–500 and 5.0–500 ng mL−1 for the HPLC (r2 = 0.9988) and CE (r2 = 0.9967) methods, respectively. The limits of detection (LOD) and limits of quantitation (LOQ) for the HPLC and CE methods were (0.18, 2.83) and (0.56, 5.00) ng mL−1, respectively. The percent relative standard deviation (n = 6) for the extraction and determination of three concentration levels (10, 250, 500 ng mL−1) of ROSI using the HPLC and CE methods were less than 10.9% and 13.2%, respectively. The developed methods are simple, rapid, sensitive and are suitable for the determination of trace amounts of ROSI in biological fluids.  相似文献   

9.
A simple and reliable method has been developed for green separation and preconcentration of trace amounts of copper ions in aqueous solutions for subsequent measurement by flame atomic absorption spectrometry (FAAS). The Cu2+ ions are adsorbed selectively and quantitatively during the passage of an aqueous solution through TDMBAC-treated analcime pyrocatechol-immobilized. The retained copper ions were desorbed from the column with 5.0 mL of 4 mol L−1 nitric acid solutions as eluent and were determined by FAAS. The linear range was 0.2-75 ng mL−1 in the original solution with a correlation coefficient of 0.9987. In this case we can concentrate 0.1 μg of copper from 1000 mL of solution and the proposed method permits a large enrichment factor (about 200). The detection limit of the proposed method is 0.05 ng mL−1 in the original solution (2σbl). Determination of copper in standard alloys showed that the proposed method has good accuracy (recovery was more than 97%). The method was successfully applied for recovery and determination of copper in several water samples.  相似文献   

10.
A novel simple, sensitive and rapid kinetic-spectrophotometric method is proposed for the determination of trace amounts of bromide. The method is based on its catalytic effect on the oxidation of methylene blue (MB) by hydrogen peroxide in strongly acidic solution. The oxidation reaction is activated by large amounts of chloride and can be monitored spectrophotometrically by measuring the decrease in the absorbance of MB at 746 nm. The determination of bromide is performed by a fixed-time method at the first 100 s from the initiation of the reaction. Unlike other kinetic-spectrophotometric methods for the determination of bromide, the proposed method does not require heating the solution. Bromide can be determined in the range from 80 to 960 μg l−1 with the detection limit of 35 μg l−1. The relative standard deviation of ten replicate determination of 480 μg l−1 bromide was 1.4%. The influence of potential interfering ions was studied. The proposed method was satisfactorily applied to the determination of bromide in seawater without interfering effect from chloride ion.  相似文献   

11.
A reliable ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method for simultaneous determination of aflatoxins B1, B2, G1, G2, M1 and M2 in peanuts and their derivative products was developed. The sample was extracted by 84% of acetonitrile aqueous solution and the extract was purified by a reliable solid phase extraction-based clean-up method. Then, the analytes were separated on Acquity UPLC HSS T3 column (100 mm × 2.1 mm, 1.8 μm particle size), and eluted with a mobile phase consisting of (A) water containing 0.1% formic acid and (B) acetonitrile/methanol (50/50, v/v). The separated compounds were detected with a Waters Micromass Quattro Ultima Pt tandem quadrupole mass spectrometer operating in positive electro-spray ionization using multiple reaction monitoring mode. The established method was extensively validated by determining the linearity (R2 ≥ 0.9990), average recovery (74.7-86.8%) and precision (relative standard deviation ≤ 10.9%). It was shown to be a suitable method for simultaneous determination of the six aflatoxins in peanuts and their derivative products. Finally, a total of 73 samples randomly collected from different areas in Zhejiang province were screened for aflatoxins with the proposed method. The results showed that 31 samples of peanut butter, 14 samples of fresh peanut and 5 samples of musty peanut were contaminated with aflatoxins. Meanwhile, this was the first report on aflatoxins M1 and M2, which were found in unprocessed peanuts and their derivative products.  相似文献   

12.
Hydrogen peroxide and nicotinamide adenine dinucleotide (NADH) may be determined amperometrically using screen-printed electrodes chemically modified with iron(III) hexacyanoosmate(II) (Osmium purple) in flow injection analysis (FIA). The determination is based on the exploitation of catalytic currents resulting from the oxidation/reduction of the modifier. The performance of the sensor was characterized and optimized by controlling several operational parameters (applied potential, pH and flow rate of the phosphate buffer). Comparison has been made with analogous complexes of ruthenium (Ruthenium purple) and iron (Prussian blue). Taking into account the sensitivity and stability of corresponding sensors, the best results were obtained with the use of Osmium purple. The sensor exhibited a linear increase of the amperometric signal with the concentration of hydrogen peroxide in the range of 0.1-100 mg L−1 with a detection limit (evaluated as 3σ) of 0.024 mg L−1 with a R.S.D. 1.5% for 10 mg L−1 H2O2 under optimized flow rate of 0.4 mL min−1 in 0.1 M phosphate buffer carrier (pH 6) and a working potential of +0.15 V versus Ag/AgCl. Afterwards, a biological recognition element - either glucose oxidase or ethanol dehydrogenase - was incorporated to achieve a sensor facilitating the determination of glucose or ethanol, respectively. The glucose sensor gave linearity between current and concentration in the range from 1 to 250 mg L−1 with a R.S.D. 2.4% for 100 mg L−1 glucose, detection limit 0.02 mg L−1 (3σ) and retained its original activity after 3 weeks when stored at 6 °C. Optimal parameters in the determination of ethanol were selected as: applied potential +0.45 V versus Ag/AgCl, flow rate 0.2 mL min−1 in 0.1 M phosphate buffer carrier (pH 7). Different structural designs of the ethanol sensor were tested and linearity obtained was up to 1000 mg L−1 with a maximum R.S.D. of 5.1%. Applications in food analysis were also examined.  相似文献   

13.
A highly sensitive determination of mercury in the presence of Cu(II) using a boron-doped diamond (BDD) thin film electrode coupled with sequential injection–anodic stripping voltammetry (SI–ASV) was proposed. The Cu(II) was simultaneously deposited with Hg(II) in a 0.5 M HCl supporting electrolyte by electrodeposition. In presence of an excess of Cu(II), the sensitivity for the determination of Hg(II) was remarkably enhanced. Cu(II) and Hg(II) were on-line deposited onto the BDD electrode surface at −1.0 V (vs. Ag/AgCl, 3 M KCl) for 150 s with a flow rate of 14 μL s−1. An anodic stripping voltammogram was recorded from −0.4 V to 0.25 V using a frequency of 60 Hz, an amplitude of 50 mV, and a step potential of 10 mV at a stopped flow. Under the optimal conditions, well-defined peaks of Cu(II) and Hg(II) were found at −0.25 V and +0.05 V (vs. Ag/AgCl, 3 M KCl), respectively. The detection of Hg(II) showed two linear dynamic ranges (0.1–30.0 ng mL−1 and 5.0–60.0 ng mL−1). The limit of detection (S/N = 3) obtained from the experiment was found to be 0.04 ng mL−1. The precision values for 10 replicate determinations were 1.1, 2.1 and 2.9% RSD for 0.5, 10 and 20 ng mL−1, respectively. The proposed method has been successfully applied for the determination of Hg(II) in seawater, salmon, squid, cockle and seaweed samples. A comparison between the proposed method and an inductively coupled plasma optical emission spectrometry (ICP-OES) standard method was performed on the samples, and the concentrations obtained via both methods were in agreement with the certified values of Hg(II), according to the paired t-test at a 95% confidence level.  相似文献   

14.
Fluorescence and terbium-sensitised luminescence properties of new quinolone garenoxacin have been studied. The fluorimetric method allows the determination of 0.060-0.600 μg ml−1 of garenoxacin in aqueous solution containing HCl/KCl buffer (pH 1.5) with λexc=282 nm and λem=421 nm. Micellar-enhanced fluorescence was also studied, leading to a higher than 400% increase in analytical signal in presence of 12 mM sodium dodecyl sulphate (SDS), allowing the determination of 0.020-0.750 μg ml−1 of garenoxacin. The terbium-sensitised luminescence method allows the determination of 0.100-1.500 μg ml−1 of garenoxacin in 12 mM SDS solution containing 0.08 M acetic acid/sodium acetate buffer (pH 4.1) and 7.5 mM Na2SO3 (chemical deoxygenation agent), with λexc=281 nm and λem=546 nm. Relative standard deviation (R.S.D.) values for the three methods were in the range 1.0-2.0%. The proposed procedures have been applied to the determination of garenoxacin in spiked human urine and serum.  相似文献   

15.
Hollow fiber-based liquid-phase microextraction (HF-LPME) is a relatively new technique employed in analytical chemistry for sample pretreatment which offers more selectivity and sensitivity than any traditional extraction technique. This paper describes a three-phase HF-LPME method for ibuprofen using a polypropylene membrane supporting dihexyl ether followed by a chemiluminescence (CL) determination using the CL enhancement on the acidic permanganate-sulfite system in a FIA configuration which is the first time that both techniques have been combined for analytical purposes. The CL intensity (peak area) was proportional to the log of ibuprofen concentration in the donor phase over the range 0.1-20 μg mL−1. The detection limit was 0.03 μg mL−1 of ibuprofen in the donor phase. The method was satisfactory reproducible and has been applied to the ibuprofen determination in pharmaceuticals and in real human urine samples.  相似文献   

16.
The applicability of hollow fiber-based liquid phase microextraction (HF-LPME) was evaluated for the extraction and preconcentration of three antidepressant drugs (amitriptyline, imipramine and sertraline) prior to their determination by HPLC-UV. The target drugs were extracted from 11.0 mL of aqueous solution with pH 12.0 (source phase) into an organic extracting solvent (n-dodecane) impregnated in the pores of a hollow fiber and finally back extracted into 24 μL of aqueous solution located inside the lumen of the hollow fiber and adjusted to pH 2.1 using 0.1 M of H3PO4 (receiving phase). The extraction was performed due to pH gradient between the inside and outside of the hollow fiber membrane. In order to obtain high extraction efficiency, the parameters affecting the HF-LPME including pH of the source and receiving phases, the type of organic phase, ionic strength and volume of the source phase, stirring rate and extraction time were studied and optimized. Under the optimized conditions, enrichment factors up to 300 were achieved and the relative standard deviation (R.S.D.%) of the method was in the range of 2-12%. The calibration curves were obtained in the range of 5-500 μg L−1 with reasonable linearity (R2 > 0.998) and the limits of detection (LODs) ranged between 0.5 and 0.7 μg L−1 (based on S/N = 3). Finally, the applicability of the proposed method was evaluated by extraction and determination of the drugs in urine, plasma and tap water samples. The results indicated that hollow fiber microextraction method has excellent clean-up and high-preconcentration factor and can be served as a simple and sensitive method for monitoring of antidepressant drugs in the biological samples.  相似文献   

17.
In this work, we demonstrate the feasibility of applying headspace single-drop microextraction with in-drop precipitation for the quantitative determination of the acid labile sulfide fraction (H2S, HS, and S2− (free sulfide), amorphous FeS and some metal sulfide complexes-clusters as ZnS) in aqueous samples by microvolume turbidimetry. The methodology lies in the in situ hydrogen sulfide generation and subsequent sequestration into an alkaline microdrop containing ZnO22− and exposed to the headspace above the stirred aqueous sample. The ZnS formed in the drop was then determined by microvolume turbidimetry. The optimum experimental conditions of the proposed method were: 2 μL of a microdrop containing 750 mg L−1 Zn(II) in 1 mol L−1 NaOH exposed to the headspace of a 20-mL aqueous sample stirred at 1600 rpm during 80 s after derivatization with 1 mL of 6 mol L−1 HCl. An enrichment factor of 1710 was achieved in only 80 s. The calibration graph was linear in the range of 5-100 μg L−1 with a detection limit of 0.5 μg L−1. The repeatability, expressed as relative standard deviation, was 5.8% (N = 9). Finally, the proposed methodology was successfully applied to the determination of the acid labile sulfide fraction in different natural water samples.  相似文献   

18.
A novel optical sensor has been proposed for sensitive determination of thorium (IV) ion in aqueous solutions. The thorium sensing membrane was prepared by incorporating 4-(p-nitrophenyl azo)-pyrocatechol (NAP) as ionophore in the plasticized PVC membrane containing tributyl phosphate (TBP) as plasticizer. The membrane responds to thorium ion by changing color reversibly from yellow to red-brown in glycine buffer solution at pH 3.5. The proposed sensor displays a linear range of 8.66 × 10−6-2.00 × 10−4 M with a limit of detection of 6 × 10−6 M. The response time of the optode was about 8.8-12.5 min, depending on the concentration of Th (IV) ions. The selectivity of optode to Th (IV) ions in glycine buffer is good. The sensor can readily be regenerated by exposure to a solution mixture of sodium fluoride and 5-sulfosalicylic acid (dihydrate) (0.01 M each). The optode is fully reversible. The proposed optode was applied to the determination of thorium (IV) in environmental water samples.  相似文献   

19.
Segura R  Pradena M  Pinto D  Godoy F  Nagles E  Arancibia V 《Talanta》2011,85(5):2316-2319
A sensitive procedure is presented for the voltammetric determination of nickel. The procedure involves an adsorptive accumulation of nickel 1-nitroso-2-napthol (NN) complex on a bismuth film electrode prepared ex situ by electrodeposition. The most suitable operating conditions and parameters such as pH, ligand concentration (CNN), adsorptive potential (Eads), adsorptive time (tads), scan rate and others were selected and the determination of nickel in aqueous solutions using the standard addition method was possible. The adsorbed Ni-NN complex gives a well defined cathodic stripping peak current at −0.70 V, which was used for the determination of nickel in the concentration range of 10.0-70.0 μg L−1 (pH 7.5; CNN 6.5 μmol L−1; Eads −0.30 V; tads 60 s) with a detection limit of 0.1 μg L−1. The relative standard deviation for a solution containing 10.0 μg L−1 of Ni(II) was 3.5% (n = 4). The proposed method was validated determining Ni(II) in certified reference waste water (SPS-WW1) and Certified Reference Water for Trace Elements (TMDA 51.3) with satisfactory results. Then lake water samples were analyzed.  相似文献   

20.
A supramolecular solvent made up of vesicles of decanoic acid in the nano- and microscale regimes dispersed in a continuous aqueous phase is proposed for the extraction/preconcentration of benzimidazolic fungicides (BFs) from river and underground water samples prior to their determination by liquid chromatography (LC)/fluorimetry. The solvent is produced from the coacervation of decanoic acid aqueous vesicles by the action of tetrabutylammonium (Bu4N+). Carbendazim (CB), thiabendazole (TB) and fuberidazole (FB) are extracted on the basis of hydrophobic and π-cation interactions and the formation of hydrogen bonds. The extraction provides high preconcentration factors (160 for CB and 190 for TB and FB), requires a short time (the procedure takes less than 20 min and several samples can be simultaneously processed) and a low sample volume (20 mL), and avoids the use of toxic organic solvents. Because of the absence of matrix interferences and the low viscosity of the extracts, these can be directly injected into the chromatographic system without the need of cleaning-up or diluting them. Recoveries are not influenced by the presence of salt concentrations up to 1 M. The proposed method provides detection limits for the determination of CB, TB and FB in natural waters of 32, 4 and 0.1 ng L−1, respectively, and a precision, expressed as relative standard deviation (n = 11) of 5.5% for CB (100 ng L−1), 4.0% for TB (80 ng L−1) and 2.5% for FB (30 ng L−1). Recoveries obtained by applying this approach to the analysis of river and underground water samples fortified at the ng L−1 level are in the intervals 75–83, 95–102 and 97–101% for CB, TB and FB, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号