首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 601 毫秒
1.
The first example of a mononuclear diphosphanidoargentate, bis[bis(trifluoromethyl)phosphanido]argentate, [Ag[P(CF(3))(2)](2)](-), is obtained via the reaction of HP(CF(3))(2) with [Ag(CN)(2)](-) and isolated as its [K(18-crown-6)] salt. When the cyclic phosphane (PCF(3))(4) is reacted with a slight excess of [K(18-crown-6)][Ag[P(CF(3))(2)](2)], selective insertion of one PCF(3) unit into each silver phosphorus bond is observed, which on the basis of NMR spectroscopic evidence suggests the [Ag[P(CF(3))P(CF(3))(2)](2)](-) ion. On treatment of the phosphane complexes [M(CO)(5)PH(CF(3))(2)] (M = Cr, W) with [K(18-crown-6)][Ag(CN)(2)], the analogous trinuclear argentates, [Ag[(micro-P(CF(3))(2))M(CO)(5)](2)](-), are formed. The chromium compound [K(18-crown-6)][Ag[(micro-P(CF(3))(2))Cr(CO)(5)](2)] crystallizes in a noncentrosymmetric space group Fdd2 (No. 43), a = 2970.2(6) pm, b = 1584.5(3) pm, c = 1787.0(4), V = 8.410(3) nm(3), Z = 8. The C(2) symmetric anion, [Ag[(micro-P(CF(3))(2))Cr(CO)(5)](2)](-), shows a nearly linear arrangement of the P-Ag-P unit. Although the bis(pentafluorophenyl)phosphanido compound [Ag[P(C(6)F(5))(2)](2)](-) has not been obtained so far, the synthesis of its trinuclear counterpart, [K(18-crown-6)][Ag[(micro-P(C(6)F(5))(2))W(CO)(5)](2)], was successful.  相似文献   

2.
The stabilization of the P(CF(3))(2)(-) ion by intermediary coordination to the very weak Lewis acid acetone gives access to single crystals of [18-crown-6-K]P(CF(3))(2). The X-ray single crystal analysis exhibits nearly isolated P(CF(3))(2)(-) ions with an unusually short P-C distance of 184(1) pm, which can be explained by negative hyperconjugation and is also found by quantum chemical hybrid DFT calculation. Coordination of the P(CF(3))(2)(-) ion to pentacarbonyl tungsten has only a minor effect on electronic and geometric properties of the P(CF(3))(2) moiety, while a strong increase in thermal stability of the dissolved species is achieved. The hitherto unknown P(C(6)F(5))(2)(-) ion is stabilized by coordination to pentacarbonyl tungsten and isolated as a stable 18-crown-6 potassium salt, [18-crown-6-K][W[P(C(6)F(5))(2)](CO)(5)], which is fully characterized. The tungstate, [W[P(C(6)F(5))(2)](CO)(5)](-), decomposes slowly in solution, while coordination of the phosphorus atom to a second pentacarbonyl tungsten moiety results in an enhanced thermal stability in solution. The single-crystal X-ray analysis of [18-crown-6-K][[W(CO)(5)](2)[mu-P(C(6)F(5))(2)]].THF exhibits a very tight arrangement of the two C(6)F(5) and two W(CO)(5) groups around the central phosphorus atom. NMR spectroscopic investigations of the [[W(CO)(5)](2)[mu-P(C(6)F(5))(2)]](-) ion exhibit a hindered rotation of both the C(6)F(5) and W(CO)(5) groups in solution.  相似文献   

3.
The reactivities of the highly electrophilic boranes ClB(C(6)F(5))(2) (1) and [HB(C(6)F(5))(2)](n) (2) towards a range of organometallic reagents featuring metals from Groups 7-10 have been investigated. Salt elimination chemistry is observed 1 between and the nucleophilic anions eta(5)-C(5)R(5))Fe(CO)(2)](-)(R = H or Me) and [Mn(CO)(5)](-), leading to the generation of the novel boryl complexes (eta(5)-C(5)R(5))Fe(CO)(2)B(C(6)F(5))(2)[R = H (3) or Me (4)] and (OC)(5)MnB(C(6)F(5))(2) (5). Such systems are designed to probe the extent to which the strongly sigma-donor boryl ligand can also act as a pi-acceptor; a variety of spectroscopic, structural and computational probes imply that even with such strongly electron withdrawing boryl substituents, the pi component of the metal-boron linkage is a relatively minor one. Similar reactivity is observed towards the hydridomanganese anion [(eta(5)-C(5)H(4)Me)Mn(CO)(2)H](-), generating a thermally labile product identified spectroscopically as (eta(5)-C(5)H(4)Me)Mn(CO)(2)(H)B(C(6)F(5))(2) (6). Boranes 1 and 2 display different patterns of reactivity towards low-valent platinum and rhodium complexes than those demonstrated previously for less electrophilic reagents. Thus, reaction of 1 with (Ph(3)P)(2)Pt(H(2)C=CH(2)) ultimately generates EtB(C(6)F(5))(2) (10) as the major boron-containing product, together with cis-(Ph(3)P)(2)PtCl(2) and trans-(Ph(3)P)(2)Pt(C(6)F(5))Cl (9). The cationic platinum hydride [(Ph(3)P)(3)PtH](+) is identified as an intermediate in the reaction pathway. Reaction of with [(Ph(3)P)(2)Rh(mu-Cl)](2), in toluene on the other hand, appears to proceed via ligand abstraction with both Ph(3)P.HB(C(6)F(5))(2) (11) and the arene rhodium(I) cation [(Ph(3)P)(2)Rh(eta(6)-C(6)H(5)Me)](+) (14) ultimately being formed.  相似文献   

4.
The thermally unstable compounds Hg(CN)P(CF(3))(2) and Hg[P(CF(3))(2)](2) were obtained by reactions of mercury cyanide and bis(trifluoromethyl)phosphane in solution and characterized by multinuclear NMR spectroscopy. An increase in thermal stability is observed when the products form 18 valence electron complexes. The compounds [Hg(P(CF(3))(2))(2)(dppe)] (dppe = 1,2-bis(diphenylphosphanyl)ethane) and [Hg(P(CF(3))(2))(2)(Me(3)P)(2)] have been isolated in almost quantitative yield by reacting [Hg(CN)(2)(dppe)] or [Hg(CN)(2)(Me(3)P)(2)] with HP(CF(3))(2). [Hg(P(CF(3))(2))(2)(dppe)] crystallizes in the triclinic space group P1. The mercury atom is coordinated in a distorted tetrahedral fashion. The Hg-P(CF(3))(2) bonds, ca. 250 pm, are significantly longer than those of the mercury bis(phosphanides) Hg(PR(2))(2) with R = t-Bu, 245 pm, or SiMe(3), 241 pm. These easily accessible compounds [Hg(P(CF(3))(2))(2)(dppe)] and [Hg(P(CF(3))(2))(2)(Me(3)P)(2)] act as nucleophilic bis(trifluoromethyl)phosphane group transfer reagents.  相似文献   

5.
The synthesis of the intramolecularly coordinated heteroleptic organostannylene tungsten pentacarbonyl complexes 4-tBu-2,6-[P(O)(OiPr)(2)](2)C(6)H(2)Sn(X)W(CO)(5) (1, X = Cl; 2, X = F; 3, X = PPh(2)) and of 4-tBu-2,6-[P(O)(OiPr)(2)](2)C(6)H(2)Sn[W(CO)(5)]PPh(2)[W(CO)(5)], 4, are reported. UV-irradiation of compound 4 in tetrahydrofurane serendipitously gave the bis(organostannylene) tungsten tetracarbonyl complex cyclo-O(2)W[OSn(R)](2)W(CO)(4) (R = 4-tBu-2,6-[P(O)(OiPr)(2)](2)C(6)H(2)), 5, that contains an unprecedented W(0)-Sn-O-W(vi) bond sequence. The compounds 1-5 were characterized by means of single crystal X-ray diffraction analysis, (1)H, (13)C, (19)F, (31)P, (119)Sn NMR, and IR spectroscopy, electrospray ionization mass spectrometry (ESI-MS), and elemental analysis. Compound 4 features a hindered rotation about the Sn-P bond.  相似文献   

6.
The dimeric iron carbonyl [CpFe(CO)(2)](2) and the iodosilanes tBu(2)RSiI were obtained from the reaction of [CpFe(CO)(2)]I with the silanides Na[SiRtBu(2)] (R = Me, tBu) in THF. By the reactions of [CpFe(CO)(2)]I and Na[SiRtBu(2)] (R = Me, tBu) the disilanes tBu(2)RSiSiRtBu(2) (R = Me, tBu) were additionally formed using more than one equivalent of the silanide. In this context it should be noted that reduction of [CpFe(CO)(2)](2) with Na[SitBu(3)] gives the disilanes tBu(3)SiSitBu(3) along with the sodium ferrate [(Na(18-crown-6))(2)Cp][CpFe(CO)(2)]. The potassium analogue [(K(18-crown-6))(2)Cp][CpFe(CO)(2)] (orthorhombic, space group Pmc2(1)), however, could be isolated as a minor product from the reaction of [CpFe(CO)(2)]I with [K(18-crown-6)][PtBu(2)BH(3)]. The reaction of [CpFe(CO)(2)](2) with the potassium benzophenone ketyl radical and subsequent treatment with 18-crown-6 yielded the ferrate [K(18-crown-6)][CpFe(CO)(2)] in THF at room temperature. The crown ether complex [K(18-crown-6)][CpFe(CO)(2)] was analyzed using X-ray crystallography (orthorhombic, space group Pna2(1)) and its thermal behaviour was investigated.  相似文献   

7.
The reactions of the hydroxo complexes [M(2)R(4)(mu-OH)(2)](2)(-) (M = Pd, R = C(6)F(5), C(6)Cl(5); M = Pt, R = C(6)F(5)), [[PdR(PPh(3))(mu-OH)](2)] (R = C(6)F(5), C(6)Cl(5)), and [[Pt(C(6)F(5))(2)](2)(mu-OH)(mu-pz)](2-) (pz = pyrazolate) with H(2)S yield the corresponding hydrosulfido complexes [M(2)(C(6)F(5))(4)(mu-SH)(2)](2-), [[PdR(PPh(3))(mu-SH)](2)], and [[Pt(C(6)F(5))(2)](2)(mu-SH)(mu-pz)](2-), respectively. The monomeric hydrosulfido complexes [M(C(6)F(5))(2)(SH)(PPh(3))](-) (M = Pd, Pt) have been prepared by reactions of the corresponding binuclear hydrosulfido complexes [M(2)(C(6)F(5))(4)(mu-SH)(2)](2-) with PPh(3) in the molar ratio 1:2, and they can be used as metalloligands toward Ag(PPh(3))(+) to form the heterodinuclear complex [(C(6)F(5))(2)(PPh(3))[S(H)AgPPh(3)]], and toward Au(PPh(3))(+) yielding the heterotrinuclear complexes [M(C(6)F(5))(2)(PPh(3))[S(AuPPh(3))(2)]]. The crystal structures of [NBu(4)](2)[[Pt(C(6)F(5))(2)(mu-SH)](2)], [Pt(C(6)F(5))(2)(PPh(3))[S(H)AgPPh(3)]], and [Pt(C(6)F(5))(2)(PPh(3))[S(AuPPh(3))(2)]] have been established by X-ray diffraction and show no short metal-metal interactions between the metallic centers.  相似文献   

8.
The previously reported hexanuclear cluster [Pt(6)(mu-PtBu(2))(4)(CO)(6)](2+)[Y](2) (1-Y(2): Y=CF(3)SO(3) (-)) contains a central Pt(4) tetrahedron bridged at each of the opposite edges by another platinum atom; in turn, four phosphido ligands bridge the four Pt-Pt bonds not involved in the tetrahedron, and, finally, one carbonyl ligand is terminally bonded to each metal centre. Interestingly, the two outer carbonyls are more easily substituted or attacked by nucleophiles than the inner four, which are bonded to the tetrahedron vertices. In fact, the reaction of 1-Y(2) with 1 equiv of [nBu(4)N]Cl or with an excess of halide salts gives the monochloride [Pt(6)(mu-PtBu(2))(4)(CO)(5)Cl](+)[Y], 2-Y, or the neutral dihalide derivatives [Pt(6)(mu-PtBu(2))(4)(CO)(4)X(2)] (3: X=Cl; 4: X=Br; 5: X=I). Moreover, the useful unsymmetrically substituted [Pt(6)(mu-PtBu(2))(4)(CO)(4)ICl] (6) was obtained by reacting equimolar amounts of 2 and [nBu(4)N]I, and the dicationic derivatives [Pt(6)(mu-PtBu(2))(4)(CO)(4)L(2)](2+)[Y](2) (7-Y(2): L=(13)CO; 8-Y(2): L=CNtBu; 9-Y(2): L=PMe(3)) were obtained by reaction of an excess of the ligand L with 1-Y(2). Weaker nitrogen ligands were introduced by dissolving the dichloride 3 in acetonitrile or pyridyne in the presence of TlPF(6) to afford [Pt(6)(mu-PtBu(2))(4) (CO)(4)L(2)](2+)[Z](2) (Z=PF(6) (-), 10-Z(2): L=MeCN; 11-Z(2): L=Py). The "apical" carbonyls in 1-Y(2) are also prone to nucleophilic addition (Nu(-): H(-), MeO(-)) affording the acyl derivatives [Pt(6)(mu-PtBu(2))(4)(CO)(4)(CONu)(2)] (12: Nu=H; 13: Nu=OMe). Complex 12 is slowly converted into the dihydride [Pt(6)(mu-PtBu(2))(4)(CO)(4)H(2)] (14), which was more cleanly prepared by reacting 3 with NaBH(4). In a unique case we observed a reaction involving also the inner carbonyls of complex 1, that is, in the reaction with a large excess of the isocyanides R-NC, which form the corresponding persubstituted derivatives [Pt(6)(mu-tPBu(2))(4)(CN-R)(6)](2+)[Y](2), (15-Y(2): R=tBu; 16-Y(2) (2-): R=-C(6)H(4)-4-C triple bond CH). All complexes were characterized by microanalysis, IR and multinuclear NMR spectroscopy. The crystal and molecular structures of complexes 3, 5, 6 and 9-Y(2) are also reported. From the redox viewpoint, all complexes display two reversible one-electron reduction steps, the location of which depends both upon the electronic effects of the substituents, and the overall charge of the original complex.  相似文献   

9.
The molybdenum(II) and tungsten(II) complexes [MCp(2)L] (Cp = eta(5)-cyclopentadienyl; L = C(2)H(4), CO) react with perfluoroalkyl iodides to give a variety of products. The Mo(II) complex [MoCp(2)(C(2)H(4))] reacts with perfluoro-n-butyl iodide or perfluorobenzyl iodide with loss of ethylene to give the first examples of fluoroalkyl complexes of Mo(IV), MoCp(2)(CF(2)CF(2)CF(2)CF(3))I (8) and MoCp(2)(CF(2)C(6)F(5))I (9), one of which (8) has been crystallographically characterized. In contrast, the CO analogue [MoCp(2)(CO)] reacts with perfluorobenzyl iodide without loss of CO to give the crystallographically characterized salt, [MoCp(2)(CF(2)C(6)F(5))(CO)](+)I(-) (10), and the W(II) ethylene precursor [WCp(2)(C(2)H(4))] reacts with perfluorobenzyl iodide without loss of ethylene to afford the salt [WCp(2)(CF(2)C(6)F(5))(C(2)H(4))](+)I(-) (11). These observations demonstrate that the metal-carbon bond is formed first. In further contrast the tungsten precursor [WCp(2)(C(2)H(4))] reacts with perfluoro-n-butyl iodide, perfluoro-iso-propyl iodide, and pentafluorophenyl iodide to give fluoroalkyl- and fluorophenyl-substituted cyclopentadienyl complexes WCp(eta(5)-C(5)H(4)R(F))(H)I (12, R(F) = CF(2)CF(2)CF(2)CF(3); 15, R(F) = CF(CF(3))(2); 16, R(F) = C(6)F(5)); the Mo analogue MoCp(eta(5)-C(5)H(4)R(F))(H)I (14, R(F) = CF(CF(3))(2)) is obtained in similar fashion. The tungsten(IV) hydrido compounds react with iodoform to afford the corresponding diiodides WCp(eta(5)-C(5)H(4)R(F))I(2) (13, R(F) = CF(2)CF(2)CF(2)CF(3); 18, R(F) = CF(CF(3))(2); 19, R(F) = C(6)F(5)), two of which (13 and 19) have been crystallographically characterized. The carbonyl precursors [MCp(2)(CO)] each react with perfluoro-iso-propyl iodide without loss of CO, to afford the exo-fluoroalkylated cyclopentadiene M(II) complexes MCp(eta(4)-C(5)H(5)R(F))(CO)I (21, M = Mo; 22, M = W); the exo-stereochemistry for the fluoroalkyl group is confirmed by an X-ray structural study of 22. The ethylene analogues [MCp(2)(C(2)H(4))] react with perfluoro-tert-butyl iodide to yield the products MCp(2)[(CH(2)CH(2)C(CF(3))(3)]I (25, M = Mo; 26, M = W) resulting from fluoroalkylation at the ethylene ligand. Attempts to provide positive evidence for fluoroalkyl radicals as intermediates in reactions of primary and benzylic substrates were unsuccessful, but trapping experiments with CH(3)OD (to give R(F)D, not R(F)H) indicate that fluoroalkyl anions are the intermediates responsible for ring and ethylene fluoroalkylation in the reactions of secondary and tertiary fluoroalkyl substrates.  相似文献   

10.
The bis(trifluoromethyl)phosphanide ion, P(CF(3))(2)(-), decomposes slowly above -30 degrees C in CH(2)Cl(2) and THF solution. An increase of the thermal stability of the P(CF(3))(2)(-) moiety is observed if excess CS(2) is added. The P(CF(3))(2)(-) moiety is stabilized because of the formation of the bis(trifluoromethyl)phosphanodithioformate anion. Solutions of a [P(CF(3))(2)CS(2)](-) salt still act as a source of P(CF(3))(2)(-), even in the presence of excess of CS(2). The stable compound [18-crown-6-K][P(CF(3))(2)CS(2)] was characterized by multinuclear NMR spectroscopy, elemental analysis, and vibrational spectroscopy in combination with quantum chemical calculations. The thermally unstable P(C(6)F(5))(2)(-) ion decomposes even at -78 degrees C in solution giving polymeric material. The intermediate formation of the bis(pentafluorophenyl)phosphanide anion in the presence of excess of CS(2) allows the isolation of [18-crown-6-K][P(C(6)F(5))(2)CS(2)]. The novel compound crystallizes with one solvent molecule CH(2)Cl(2) in the monoclinic space group P2(1)/n with a = 1151.8(1) pm, b = 1498.1(2) pm, c = 2018.2(2) pm, beta = 102.58(1) degrees, and Z = 4. Optimized geometric parameters of the [P(C(6)F(5))(2)CS(2)](-) ion at the B3PW91/6-311G(d) level of theory are in excellent agreement with the experimental values.  相似文献   

11.
The synthesis and characterization of a series of mononuclear d(8) complexes with at least two P-coordinated alkynylphosphine ligands and their reactivity toward cis-[Pt(C(6)F(5))(2)(THF)(2)] are reported. The cationic [Pt(C(6)F(5))(PPh(2)C triple-bond CPh)(3)](CF(3)SO(3)), 1, [M(COD)(PPh(2)C triple-bond CPh)(2)](ClO(4)) (M = Rh, 2, and Ir, 3), and neutral [Pt(o-C(6)H(4)E(2))(PPh(2)C triple-bond CPh)(2)] (E = O, 6, and S, 7) complexes have been prepared, and the crystal structures of 1, 2, and 7.CH(3)COCH(3) have been determined by X-ray crystallography. The course of the reactions of the mononuclear complexes 1-3, 6, and 7 with cis-[Pt(C(6)F(5))(2)(THF)(2)] is strongly influenced by the metal and the ligands. Thus, treatment of 1 with 1 equiv of cis-[Pt(C(6)F(5))(2)(THF)(2)] gives the double inserted cationic product [Pt(C(6)F(5))(S)mu-(C(Ph)=C(PPh(2))C(PPh(2))=C(Ph)(C(6)F(5)))Pt(C(6)F(5))(PPh(2)C triple-bond CPh)](CF(3)SO(3)) (S = THF, H(2)O), 8 (S = H(2)O, X-ray), which evolves in solution to the mononuclear complex [(C(6)F(5))(PPh(2)C triple-bond CPh)Pt(C(10)H(4)-1-C(6)F(5)-4-Ph-2,3-kappaPP'(PPh(2))(2))](CF(3) SO(3)), 9 (X-ray), containing a 1-pentafluorophenyl-2,3-bis(diphenylphosphine)-4-phenylnaphthalene ligand, formed by annulation of a phenyl group and loss of the Pt(C(6)F(5)) unit. However, analogous reactions using 2 or 3 as precursors afford mixtures of complexes, from which we have characterized by X-ray crystallography the alkynylphosphine oxide compound [(C(6)F(5))(2)Pt(mu-kappaO:eta(2)-PPh(2)(O)C triple-bond CPh)](2), 10, in the reaction with the iridium complex (3). Complexes 6 and 7, which contain additional potential bridging donor atoms (O, S), react with cis-[Pt(C(6)F(5))(2)(THF)(2)] in the appropriate molar ratio (1:1 or 1:2) to give homo- bi- or trinuclear [Pt(PPh(2)C triple-bond CPh)(mu-kappaE-o-C(6)H(4)E(2))(mu-kappaP:eta(2)-PPh(2)C triple-bond CPh)Pt(C(6)F(5))(2)] (E = O, 11, and S, 12) and [(Pt(mu(3)-kappa(2)EE'-o-C(6)H(4)E(2))(mu-kappaP:eta(2)-PPh(2)C triple-bond CPh)(2))(Pt(C(6)F(5))(2))(2)] (E = O, 13, and S, 14) complexes. The molecular structure of 14 has been confirmed by X-ray diffraction, and the cyclic voltammetric behavior of precursor complexes 6 and 7 and polymetallic derivatives 11-14 has been examined.  相似文献   

12.
NO[Al(OC(CF(3))(2)Ph)(4)] 1 and NO[Al(OC(CF(3))(3))(4)] 2 were obtained by the metathesis reaction of NO[SbF(6)] and the corresponding Li[Al(OR)(4)] salts in liquid sulfur dioxide solution in ca 40% (1) and 85% (2) isolated yield. 1 and 2, as well as Li[NO(3)] and N(2)O, were also given by the reaction of an excess of mixture of (90 mol%) NO, (10 mol%) NO(2) with Li[Al(OR)(4)] followed by extraction with SO(2). The unfavourable disproportionation reaction of 2NO(2)(g) to [NO](+)(g) and [NO(3)](-)(g)[DeltaH degrees = +616.2 kJ mol(-1)] is more than compensated by the disproportionation energy of 3NO(g) to N(2)O(g) and NO(2)(g)[DeltaH degrees =-155.4 kJ mol(-1)] and the lattice energy of Li[NO(3)](s)[U(POT)= 862 kJ mol(-1)]. Evidence is presented that the reaction proceeds via a complex of [Li](+) with NO, NO(2)(or their dimers) and N(2)O. NO(2) and Li[Al(OC(CF(3))(3))(4)] gave [NO(3)(NO)(3)][Al(OC(CF(3))(3))(4)](2), NO[Al(OC(CF(3))(3))(4)] and (NO(2))[Al(OC(CF(3))(3))(4)] products. The aluminium complex [Li[AlF(OC(CF(3))(2)Ph)(3)]](2) 3 was prepared by the thermal decomposition of Li[Al(OC(CF(3))(2)Ph)(4)]. Compounds 1 and 3 were characterized by single crystal X-ray structural analyses, 1-3 by elemental analyses, NMR, IR, Raman and mass spectra. Solid 1 contains [Al(OC(CF(3))(2)Ph)(4)](-) and [NO](+) weakly linked via donor acceptor interactions, while in the SO(2) solution there is an equilibrium between the associated [NO](+)[Al(OC(CF(3))(2)Ph)(4)](-) and separated solvated ions. Solid 2 contains essentially ionic [NO](+) and [Al(OC(CF(3))(3))(4)](-). Complex 3 consists of two [Li[AlF(OC(CF(3))(2)Ph)(3)]] units linked via fluorine lithium contacts. Compound 1 is unstable in the SO(2) solution and decomposes to yield [AlF(OC(CF(3))(2)Ph)(3)](-), [(PhC(CF(3))(2)O)(3)Al(mu-F)Al(OC(CF(3))(2)Ph)(3)](-) anions as well as (NO)C(6)H(4)C(CF(3))(2)OH, while compound 2 is stable in liquid SO(2). The [small nu](NO(+)) in 1 and [NO](+)(toluene)[SbCl(6)] are similar, implying similar basicities of [Al(OC(CF(3))(2)Ph)(4)](-) and toluene.  相似文献   

13.
Halide exchange from the species tBu(3)P(CO(2))B(C(6)F(5))(2)Cl 1 with Me(3)SiOSO(2)CF(3) gave tBu(3)P(CO(2))B(C(6)F(5))(2)(OSO(2)CF(3)) 2. Similarly, Lewis acid exchange occurs in reactions of 1 with Al(C(6)F(5))(3) and [Cp(2)TiMe][B(C(6)F(5))(4)] affording the products, tBu(3)P(CO(2))Al(C(6)F(5))(3)3 and [tBu(3)P(CO(2))TiCp(2)Cl][B(C(6)F(5))(4)] 4.  相似文献   

14.
Deep-blue solutions of Y(2+) formed from Y(NR(2))(3) (R = SiMe(3)) and excess potassium in the presence of 18-crown-6 at -45 °C under vacuum in diethyl ether react with CO at -78 °C to form colorless crystals of the (CO)(1-) radical complex, {[(R(2)N)(3)Y(μ-CO)(2)][K(2)(18-crown-6)(2)]}(n), 1. The polymeric structure contains trigonal bipyramidal [(R(2)N)(3)Y(μ-CO)(2)](2-) units with axial (CO)(1-) ligands linked by [K(2)(18-crown-6)(2)](2+) dications. Byproducts such as the ynediolate, [(R(2)N)(3)Y](2)(μ-OC≡CO){[K(18-crown-6)](2)(18-crown-6)}, 2, in which two (CO)(1-) anions are coupled to form (OC≡CO)(2-), and the insertion/rearrangement product, {(R(2)N)(2)Y[OC(═CH(2))Si(Me(2))NSiMe(3)]}[K(18-crown-6)], 3, are common in these reactions that give variable results depending on the specific reaction conditions. The CO reduction in the presence of THF forms a solvated variant of 2, the ynediolate [(R(2)N)(3)Y](2)(μ-OC≡CO)[K(18-crown-6)(THF)(2)](2), 2a. CO(2) reacts analogously with Y(2+) to form the (CO(2))(1-) radical complex, {[(R(2)N)(3)Y(μ-CO(2))(2)][K(2)(18-crown-6)(2)]}(n), 4, that has a structure similar to that of 1. Analogous (CO)(1-) and (OC≡CO)(2-) complexes of lutetium were isolated using Lu(NR(2))(3)/K/18-crown-6: {[(R(2)N)(3)Lu(μ-CO)(2)][K(2)(18-crown-6)(2)]}(n), 5, [(R(2)N)(3)Lu](2)(μ-OC≡CO){[K(18-crown-6)](2)(18-crown-6)}, 6, and [(R(2)N)(3)Lu](2)(μ-OC≡CO)[K(18-crown-6)(Et(2)O)(2)](2), 6a.  相似文献   

15.
The synthesis of bis(carbonyl)mercury(II) undecafluorodiantimonate(V), [Hg(CO)(2)][Sb(2)F(11)](2), and that of the corresponding mercury(I) salt [Hg(2)(CO)(2)][Sb(2)F(11)](2) are accomplished by the solvolyses of Hg(SO(3)F)(2) or of Hg(2)F(2), treated with fluorosulfuric acid, HSO(3)F, in liquid antimony(V) fluoride at 80 or 60 degrees C, respectively, in an atmosphere of CO (500-800 mbar). The resulting white solids are the first examples of metal carbonyl derivatives formed by a post-transition element. Both salts are characterized by FT-IR, FT-Raman, and (13)C-MAS-NMR spectroscopy. For [Hg(CO)(2)][Sb(2)F(11)], unprecedentedly high CO stretching frequencies (nu(av) = 2279.5 cm(-)(1)) and stretching force constant (f(r) = 21.0 +/- 0.1) x 10(2) Nm(-)(1)) are obtained. Equally unprecedented is the (1)J((13)C-(199)Hg) value of 5219 +/- 5 Hz observed in the (13)C MAS-NMR spectrum of the (13)C labeled isotopomers at delta = 168.8 +/- 0.1 ppm. The corresponding values (nu(av) = 2247 cm(-)(1), f(r) = (20.4 +/- 0.1) x 10(2) Nm(-)(1), (1)J((13)C-(199)Hg) = 3350 +/- 50 Hz and (2)J((13)C-(199)Hg) 850 +/- 50 Hz) are found for [Hg(2)(CO)(2)][Sb(2)F(11)](2), which has lower thermal stability (decomposition point in a sealed tube is 140 degrees C vs 160 degrees C for the Hg(II) compound) and a decomposition pressure of 8 Torr at 20 degrees C. The mercury(I) salt is sensitive toward oxidation to [Hg(CO)(2)][Sb(2)F(11)](2) during synthesis. Both linear cations (point group D(infinity)(h)()) are excellent examples of nonclassical (sigma-only) metal-CO bonding. Crystal data for [Hg(CO)(2)][Sb(2)F(11)](2): monoclinic, space group P2(1)/n; Z = 2; a = 7.607(2) ?; b = 14.001(3) ?; c = 9.730(2) ?; beta = 111.05(2) degrees; V = 967.1 ?(3); T = 195 K; R(F) = 0.035 for 1983 data (I(o) >/= 2.5sigma(I(o))) and 143 variables. The Hg atom lies on a crystallographic inversion center. The Hg-C-O angle is 177.7(7) degrees. The length of the mercury-carbon bond is 2.083(10) ? and of the C-O bond 1.104(12) ? respectively. The structure is stabilized in the solid state by a number of significant secondary interionic Hg- - -F and C- - -F contacts.  相似文献   

16.
A series of novel dinuclear tungsten(IV) oxo complexes with disubstituted 4,4'-R,R-2,2'-bipyridyl (R(2)bpy) ligands of the type [(Cp*W(R(2)bpy)(mu-O))(2)][PF(6)](2) (R=NMe(2), tBu, Me, H, Cl) was prepared by hydrolysis of the tungsten(IV) trichloro complexes [Cp*W(R(2)bpy)Cl(3)]. Cyclic voltammetry measurements for the tungsten(IV) oxo compounds provided evidence for one reversible oxidation and two reversible reductions leading to the oxidation states W(V)W(IV), W(IV)W(III) and W(III)W(III). The corresponding complexes [(Cp*W(R(2)bpy)(mu-O))(2)](n+) [PF(6)](n) (n=0 for R=Me, tBu, and 1, 3 for both R=Me) could be isolated after chemical oxidation/reduction of the tungsten(IV) oxo complexes. The crystal structures of the complexes [(Cp*W(R(2)bpy)(mu-O))(2)][BPh(4)](2) (R=NMe(2), tBu) and [(Cp*W(Me(2)bpy)(mu-O))(2)](n+)[PF(6)](n) (n=0, 1, 2, 3) show a cis geometry with a puckered W(2)O(2) four-membered ring for all compounds except [(Cp*W(Me(2)bpy)(mu-O))(2)] which displays a trans geometry with a planar W(2)O(2) ring. Examining the interaction of these novel tungsten oxo complexes with protons, we were able to show that the W(IV)W(IV) complexes [(Cp*W(R(2)bpy)(mu-O))(2)][PF(6) (-)](2) (R=NMe(2), tBu) undergo reversible protonation, while the W(III)W(III) complexes [(Cp*W(R(2)bpy)(mu-O))(2)] transfer two electrons forming the W(IV)W(IV) complex and molecular hydrogen.  相似文献   

17.
A series of group 6 transition metal half-sandwich complexes with 1,1-dichalcogenide ligands have been prepared by the reactions of Cp*MCl(4)(Cp* = eta(5)-C(5)Me(5); M = Mo, W) with the potassium salt of 2,2-dicyanoethylene-1,1-dithiolate, (KS)(2)C=C(CN)(2) (K(2)-i-mnt), or the analogous seleno compound, (KSe)(2)C=C(CN)(2) (K(2)-i-mns). The reaction of Cp*MCl(4) with (KS)(2)C=C(CN)(2) in a 1:3 molar ratio in CH(3)CN gave rise to K[Cp*M(S(2)C=C(CN)(2))(2)] (M = Mo, 1a, 74%; M = W, 2a, 46%). Under the same conditions, the reaction of Cp*MoCl(4) with 3 equiv of (KSe)(2)C=C(CN)(2) afforded K[Cp*Mo(Se(2)C=C(CN)(2))(2)] (3a) and K[Cp*Mo(Se(2)C=C(CN)(2))(Se(Se(2))C=C(CN)(2))] (4) in respective yields of 45% and 25%. Cation exchange reactions of 1a, 2a, and 3a with Et(4)NBr resulted in isolation of (Et(4)N)[Cp*Mo(S(2)C=C(CN)(2))(2)] (1b), (Et(4)N)[Cp*W(S(2)C=C(CN)(2))(2)] (2b), and (Et(4)N)[Cp*Mo(Se(2)C=C(CN)(2))(2)] (3b), respectively. Complex 4 crystallized with one THF and one CH(3)CN molecule as a three-dimensional network structure. Inspection of the reaction of Cp*WCl(4) with (KSe)(2)C=C(CN)(2) by ESI-MS revealed the existence of three species in CH(3)CN, [Cp*W(Se(2)C=C(CN)(2))(2)]-, [Cp*W(Se(2)C=C(CN)(2))(Se(Se(2))C=C(CN)(2))]-, and [Cp*W(Se(Se(2))C=C(CN)(2))(2)]-, of which [Cp*W(Se(2)C=C(CN)(2))(Se(Se(2))C=C(CN)(2))]-(5) was isolated as the main product. Treatment of 2a with 1/4 equiv of S(8) in refluxing THF resulted in sulfur insertion and gave rise to K[Cp*W(S(2)C=C(CN)(2))(S(S(2))C=C(CN)(2))](6), which crystallized with two THF molecules forming a three-dimensional network structure. 6 can also be prepared by refluxing 2a with 1/4 equiv of S(8) in THF. 3a readily added one Se atom upon treatment with 1 mol of Se powder in THF to give 4 in high yield, while the treatment of 3a or 4 with 2 equiv of Na(2)Se in THF led to formation of a dinuclear complex [(Cp*Mo)(2)(mu-Se)(mu-Se(Se(3))C=C(CN)(2))] (7). The structure of 7 consists of two Cp*Mo units bridged by a Se(2-) and a [Se(Se(3))C=C(CN)(2)](2-) ligand in which the triselenido group is arranged in a nearly linear way (163 degrees). The reaction of 2a with 2 equiv of CuBr in CH(3)CN yielded a trinuclear complex [Cp*WCu(2)(mu-Br)(mu(3)-S(2)C=C(CN)(2))(2)] (8), which crystallized with one CH(3)CN and generated a one-dimensional chain polymer through bonding of Cu to the N of the cyano groups.  相似文献   

18.
Reduction at ambient temperature of each of the lithium benzamidinates [Li(L(1))(tmeda)] or [{Li(L(2))(OEt(2))(2)}(2)] with four equivalents of lithium metal in diethyl ether or thf furnished the brown crystalline [Li(3)(L(1))(tmeda)] (1) or [Li(thf)(4)][Li(5)(L(2))(2)(OEt(2))(2)] (2), respectively. Their structures show that in each the [N(R(1))C(R(3))NR(2)](3-) moiety has the three negative charges largely localised on each of N, N' and R = Aryl); a consequence is that the "aromatic" 2,3- and 5,6-CC bonds of R(3) approximate to being double bonds. Multinuclear NMR spectra in C(6)D(6) and C(7)D(8) show that 1 and 2 exhibit dynamic behaviour. [The following abbreviations are used: L(1) = N(SiMe(3))C(Ph)N(SiMe(3)); L(2) = N(SiMe(3))C(C(6)H(4)Me-4)N(Ph); tmeda = (Me(2)NCH(2)-)(2); thf = tetrahydrofuran.] This reduction is further supported by a DFT analysis.  相似文献   

19.
A new gold(ii) species [(CF(3))(4)Au(2)(C(5)H(5)N)(2)] with a very short unsupported Au-Au bond (250.62(9) pm) was generated by photo irradiation of a silver aurate, [Ag(Py)(2)][Au(CF(3))(2)], unambiguously characterized by (19)F and (109)Ag NMR studies.  相似文献   

20.
Reaction of [2.2]paracyclophane (pcp) with silver(I) trifluoroacetate (AgCF(3)CO(2)) and silver(I) pentafluoroproprionate (AgC(2)F(5)CO(2)) has led to isolation of three novel intercalation polymers: [Ag(4)(pcp)(CF(3)CO(2))(4)](C(6)H(6)) (1), [Ag(4)(pcp)(CF(3)CO(2))(4)](C(6)H(3)Me(3)) (2), and [Ag(4)(pcp)(C(2)F(5)CO(2))(4)](pcp) (3). Structure studies using single crystal X-ray diffraction have shown that all compounds contain two-dimensional layered frameworks based on cation-pi interactions, in which pcp exhibits an unprecedented micro-tetra-eta(2) coordination mode. Guest molecules which weakly interact with the host pcp via C-H.pi interactions are intercalated between layers. The guest-eliminated complexes (1a and 2a) and guest-reincorporated ones (1b or 1c and 2b or 2c), accompanied by small structural changes, were confirmed by (1)H NMR, thermogravimetric analysis, mass spectra, and X-ray powder diffraction patterns. The structural changes from 1 --> 1a --> 1c (=1) can take place reversibly in the process of exposure of 1a to benzene vapor. The original framework of complex 2 is also completely recovered by immersing 2a in mesitylene as well as exposing it to mesitylene vapor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号