首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 447 毫秒
1.
We obtain a sharp minimum degree condition δ (G) ≥ of a graph G of order n ≥ 3k guaranteeing that, for any k distinct vertices, G contains k vertex‐disjoint cycles of length at most four each of which contains one of the k prescribed vertices. © 2001 John Wiley & Sons, Inc. J Graph Theory 37: 37–47, 2001  相似文献   

2.
Enomoto 7 conjectured that if the minimum degree of a graph G of order n ≥ 4k ? 1 is at least the integer , then for any k vertices, G contains k vertex‐disjoint cycles each of which contains one of the k specified vertices. We confirm the conjecture for n ≥ ck2 where c is a constant. Furthermore, we show that under the same condition the cycles can be chosen so that each has length at most six. © 2003 Wiley Periodicals, Inc. J Graph Theory 42: 276–296, 2003  相似文献   

3.
Let k and n be two integers such that k ≥ 0 and n ≥ 3(k + 1). Let G be a graph of order n with minimum degree at least ?(n + k)/2?. Then G contains k + 1 independent cycles covering all the vertices of G such that k of them are triangles. © 1995, John Wiley & Sons, Inc.  相似文献   

4.
A hypertournament or a k‐tournament, on n vertices, 2≤kn, is a pair T=(V, E), where the vertex set V is a set of size n and the edge set E is the collection of all possible subsets of size k of V, called the edges, each taken in one of its k! possible permutations. A k‐tournament is pancyclic if there exists (directed) cycles of all possible lengths; it is vertex‐pancyclic if moreover the cycles can be found through any vertex. A k‐tournament is strong if there is a path from u to v for each pair of distinct vertices u and v. A question posed by Gutin and Yeo about the characterization of pancyclic and vertex‐pancyclic hypertournaments is examined in this article. We extend Moon's Theorem for tournaments to hypertournaments. We prove that if k≥8 and nk + 3, then a k‐tournament on n vertices is vertex‐pancyclic if and only if it is strong. Similar results hold for other values of k. We also show that when n≥7, k≥4, and nk + 2, a strong k‐tournament on n vertices is pancyclic if and only if it is strong. The bound nk+ 2 is tight. We also find bounds for the generalized problem when we extend vertex‐pancyclicity to require d edge‐disjoint cycles of each possible length and extend strong connectivity to require d edge‐disjoint paths between each pair of vertices. Our results include and extend those of Petrovic and Thomassen. © 2009 Wiley Periodicals, Inc. J Graph Theory 63: 338–348, 2010  相似文献   

5.
Let Gn,m,k denote the space of simple graphs with n vertices, m edges, and minimum degree at least k, each graph G being equiprobable. Let G have property Ak, if G contains ⌊(k − 1)/2⌋ edge disjoint Hamilton cycles, and, if k is even, a further edge disjoint matching of size ⌊n/2⌋. We prove that, for k ≥ 3, there is a constant Ck such that if 2mCkn then Ak occurs in Gn,m,k with probability tending to 1 as n → ∞. © 2000 John Wiley & Sons, Inc. J. Graph Theory 34: 42–59, 2000  相似文献   

6.
Younger conjectured that for everyk there is ag(k) such that any digraphG withoutk vertex disjoint cycles contains a setX of at mostg(k) vertices such thatG–X has no directed cycles. Gallai had previously conjectured this result fork=1. We prove this conjecture for planar digraphs. Specifically, we show that ifG is a planar digraph withoutk vertex disjoint directed cycles, thenG contains a set of at mostO(klog(k)log(log(k))) vertices whose removal leaves an acyclic digraph. The work also suggests a conjecture concerning an extension of Vizing's Theorem for planar graphs.  相似文献   

7.
Let G be a graph of order n and k ≥ 0 an integer. It is conjectured in [8] that if for any two vertices u and v of a 2(k + 1)‐connected graph G,d G (u,v) = 2 implies that max{d(u;G), d(v;G)} ≥ (n/2) + 2k, then G has k + 1 edge disjoint Hamilton cycles. This conjecture is true for k = 0, 1 (see cf. [3] and [8]). It will be proved in this paper that the conjecture is true for every integer k ≥ 0. © 2000 John Wiley & Sons, Inc. J Graph Theory 35: 8–20, 2000  相似文献   

8.
Let G be a graph of order n, and n = Σki=1 ai be a partition of n with ai ≥ 2. In this article we show that if the minimum degree of G is at least 3k−2, then for any distinct k vertices v1,…, vk of G, the vertex set V(G) can be decomposed into k disjoint subsets A1,…, Ak so that |Ai| = ai,viisAi is an element of Ai and “the subgraph induced by Ai contains no isolated vertices” for all i, 1 ≥ ik. Here, the bound on the minimum degree is sharp. © 1997 John Wiley & Sons, Inc.  相似文献   

9.
We introduce a method for reducing k‐tournament problems, for k ≥ 3, to ordinary tournaments, that is, 2‐tournaments. It is applied to show that a k‐tournament on n ≥ k + 1 + 24d vertices (when k ≥ 4) or on n ≥ 30d + 2 vertices (when k = 3) has d edge‐disjoint Hamiltonian cycles if and only if it is d‐edge‐connected. Ironically, this is proved by ordinary tournament arguments although it only holds for k ≥ 3. We also characterizatize the pancyclic k‐tournaments, a problem posed by Gutin and Yeo.(Our characterization is slightly incomplete in that we prove it only for n large compared to k.). © 2005 Wiley Periodicals, Inc. J Graph Theory  相似文献   

10.
We prove that each polyhedral map G on a compact 2-manifold, which has large enough vertices, contains a k-path, a path on k vertices, such that each vertex of it has, in G, degree at most 6k; this bound being best possible for k even. Moreover, if G has large enough vertices of degree >6k, than it contains a k-path such that each its vertex has degree, in G, at most 5k; this bound is best possible for any k. Received: December 8, 1997 Revised: April 27, 1998  相似文献   

11.
Let k be an integer with k ≥ 2 and G a graph with order n > 4k. We prove that if the minimum degree sum of any two nonadjacent vertices is at least n + k, then G contains a vertex cover with exactly k components such that k−1 of them are chorded 4-cycles. The degree condition is sharp in general.  相似文献   

12.
For a graph G, let σ2(G) denote the minimum degree sum of a pair of nonadjacent vertices. We conjecture that if |V(G)| = n = Σki = 1 ai and σ2(G) ≥ n + k − 1, then for any k vertices v1, v2,…, vk in G, there exist vertex‐disjoint paths P1, P2,…, Pk such that |V(Pi)| = ai and vi is an endvertex of Pi for 1 ≤ ik. In this paper, we verify the conjecture for the cases where almost all ai ≤ 5, and the cases where k ≤ 3. © 2000 John Wiley & Sons, Inc. J Graph Theory 34: 163–169, 2000  相似文献   

13.
Let ??(n, m) denote the class of simple graphs on n vertices and m edges and let G ∈ ?? (n, m). There are many results in graph theory giving conditions under which G contains certain types of subgraphs, such as cycles of given lengths, complete graphs, etc. For example, Turan's theorem gives a sufficient condition for G to contain a Kk + 1 in terms of the number of edges in G. In this paper we prove that, for m = αn2, α > (k - 1)/2k, G contains a Kk + 1, each vertex of which has degree at least f(α)n and determine the best possible f(α). For m = ?n2/4? + 1 we establish that G contains cycles whose vertices have certain minimum degrees. Further, for m = αn2, α > 0 we establish that G contains a subgraph H with δ(H) ≥ f(α, n) and determine the best possible value of f(α, n).  相似文献   

14.
A bisection of a graph is a balanced bipartite spanning sub‐graph. Bollobás and Scott conjectured that every graph G has a bisection H such that degH(v) ≥ ?degG(v)/2? for all vertices v. We prove a degree sequence version of this conjecture: given a graphic sequence π, we show that π has a realization G containing a bisection H where degH(v) ≥ ?(degG(v) ? 1)/2? for all vertices v. This bound is very close to best possible. We use this result to provide evidence for a conjecture of Brualdi (Colloq. Int. CNRS, vol. 260, CNRS, Paris) and Busch et al. (2011), that if π and π ? k are graphic sequences, then π has a realization containing k edge‐disjoint 1‐factors. We show that if the minimum entry δ in π is at least n/2 + 2, then π has a realization containing edge‐disjoint 1‐factors. We also give a construction showing the limits of our approach in proving this conjecture. © 2011 Wiley Periodicals, Inc. J Graph Theory  相似文献   

15.
In this article, we prove that a line graph with minimum degree δ≥7 has a spanning subgraph in which every component is a clique of order at least three. This implies that if G is a line graph with δ≥7, then for any independent set S there is a 2‐factor of G such that each cycle contains at most one vertex of S. This supports the conjecture that δ≥5 is sufficient to imply the existence of such a 2‐factor in the larger class of claw‐free graphs. It is also shown that if G is a claw‐free graph of order n and independence number α with δ≥2n/α?2 and n≥3α3/2, then for any maximum independent set S, G has a 2‐factor with α cycles such that each cycle contains one vertex of S. This is in support of a conjecture that δ≥n/α≥5 is sufficient to imply the existence of a 2‐factor with α cycles, each containing one vertex of a maximum independent set. © 2011 Wiley Periodicals, Inc. J Graph Theory 69: 251–263, 2012  相似文献   

16.
Let k be a fixed integer at least 3. It is proved that every graph of order (2k ? 1 ? 1/k)n + O(1) contains n vertex disjoint induced subgraphs of order k such that these subgraphs are equivalent to each other and they are equivalent to one of four graphs: a clique, an independent set, a star, or the complement of a star. In particular, by substituting 3 for k, it is proved that every graph of order 14n/3 + O(1) contains n vertex disjoint induced subgraphs of order 3 such that they are equivalent to each other. © 2007 Wiley Periodicals, Inc. J Graph Theory 56: 159–166, 2007  相似文献   

17.
In this paper we prove two results. The first is an extension of a result of Dirac which says that any set of n vertices of an n‐connected graph lies in a cycle. We prove that if V′ is a set of at most 2n vertices in an n‐connected graph G, then G has, as a minor, a cycle using all of the vertices of V′. The second result says that if G is an n+1‐connected graph with maximum vertex degree Δ then G contains a subgraph that is a subdivision of W2n if and only if Δ≥2n. © 2009 Wiley Periodicals, Inc. J Graph Theory 62: 100–108, 2009  相似文献   

18.
We give a sufficient condition for a simple graph G to have k pairwise edge‐disjoint cycles, each of which contains a prescribed set W of vertices. The condition is that the induced subgraph G[W] be 2k‐connected, and that for any two vertices at distance two in G[W], at least one of the two has degree at least |V(G)|/2 + 2(k ? 1) in G. This is a common generalization of special cases previously obtained by Bollobás/Brightwell (where k = 1) and Li (where W = V(G)). A key lemma is of independent interest. Let G be the complement of a bipartite graph with partite sets X, Y. If G is 2k connected, then G contains k Hamilton cycles that are pairwise edge‐disjoint except for edges in G[Y]. © 2005 Wiley Periodicals, Inc. J Graph Theory  相似文献   

19.
Let H = F(v) ⊕ G(w) denote the graph obtained from F and G by identifying vertices v of F and w of G; H will be said to be obtained by surgery on F and G. A matching of a graph is a collection of edges, no two of which are incident with the same vertex. This paper presents a constructive characterization of the set Sk (k ≥ 2) of trees which have at least k disjoint maximum matchings. There are three types of surgery such that, for each k ≥ 2, Sk is the set of all trees obtainable from a star K1.n (nk) by a finite sequence of the specified surgical operations. A constructive characterization is also given for trees with two disjoint maximum indepent vertex sets.  相似文献   

20.
The tree partition number of an r‐edge‐colored graph G, denoted by tr(G), is the minimum number k such that whenever the edges of G are colored with r colors, the vertices of G can be covered by at most k vertex‐disjoint monochromatic trees. We determine t2(K(n1, n2,…, nk)) of the complete k‐partite graph K(n1, n2,…, nk). In particular, we prove that t2(K(n, m)) = ? (m‐2)/2n? + 2, where 1 ≤ nm. © 2004 Wiley Periodicals, Inc. J Graph Theory 48: 133–141, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号