首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present work, first we give some definitions and theorems on hyperbolic maps, structurally stability and deterministic chaos. The limit set of the Kleinian transformation acting on the E-infinity Cantorian space–time turned out to be a set of periodic continued fractions as shown in [Chaos, Solitons & Fractals, 21 (2004) 9]. That set has a hyperbolic structure and is structurally stable. Subsequently, we show that the appearance of transversal homoclinic points induces a chaotic behavior in that set.  相似文献   

2.
Starting from the two-slit experiment we show that the so-called particle–wave duality could be resolved amicably by assuming space–time to be a fuzzy K3 manifold akin to that of E-Infinity theory. Subsequently, we show how many of the fundamental constants of nature such as the electromagnetic fine structure as well as the quantum gravity coupling may be deduced from the topology and geometry of the space–time manifold.  相似文献   

3.
Using the concept of ‘combined field’, an electrodynamics of polarizable media on a fractal space–time is constructed. In this context, using the scale relativity theory, the permanent electric moment, the induced electric moment, the vacuum fluctuations, the paraelectrics, the diaelectrics, the electric Zeeman-type effect, the electric Einstein–de Haas-type effect, the electric Aharonov–Bohm-type effect, the superconductors in the ‘combined field’, the double layers as coherent structures, the magnetic Aharonov–Casher-type effect, are analyzed. Correspondence with the ε(∞) space–time is accomplished either by admitting an anomal electric Zeeman-type effect, or through a fractal string as in the case of a superconductor in ‘combined field’, or, by phase coherence of the electron–ion pairs from the electric double layers (El Naschie’s coherence). Moreover, the electric double layer or multiple layer may be considered as two-dimensional projections of the same El Naschie’s fractal strings (higher-dimensional strings in ε(∞) space–time).  相似文献   

4.
In “Beyond Einstein” the leading string theoretician and notable science writer Michio Kaku referred to what he labelled the ‘strange’ link between the E8 exceptional Lie group and the various dimensionalities of strings and super string theories and commented on that by saying “If we could understand why the numbers 8, 10 and 26 continually crop up in super string theory, perhaps we could understand why the universe is four dimensional”.In the present work we demonstrate the existence of a Fibonacci code-like connection between the various coupling constants, charges and dimensionalities of super strings and P-Brane theories. This code is based on the Fibonacci numbers and the golden mean and in the final analysis, may be attributed to the deterministically chaotic nature of the hyperbolic Cantorian sets fixing the geometry and topology of quantum spacetime.  相似文献   

5.
In the weak-field approximation, some implications of duality in the Weyl–Dirac (WD) theory, using the Gregorash–Papini–Wood approach, are investigated. Any particle is in a permanent interaction with the ‘subquantic level’ (Madelung’s fluid) and, as a result of this interaction, the particle acquires the proper fluctuation curvature and the proper fluctuation energy, respectively. By fixing the fluctuations scale, the quantum fluid orders either by means of bright cnoidal oscillation modes inducing causality, or by means of dark cnoidal oscillation modes inducing acausality, and non-linear effects, respectively. The periodic mode is associated with the undulatory characteristic, and the solitonic one with the corpuscular one. By not fixing the fluctuations scale and keeping the symmetry, the quantum fluid orders like a two-dimensional (2D) lattice of vortices, so that the duality needs coherence. In the compatibility between quantum hydrodynamics in the Madelung’s representation and the wave mechanics, the self-gravitational field of the Weyl–Dirac type physical object is generated. El Naschie’s space–time implies, by means of transfinite heterotic string theory, the masses of nucleons, and, by the gravitational fractional quantum Hall effect, the dispersion of the wave-packet on the particle. The analysis of the fractal dimension of the physical object described by the WD theory shows that the waves, and corpuscle, respectively are 2D projections of a higher dimensional special string in El Naschie’s space–time (El Naschie’s string).  相似文献   

6.
We develop field theoretic arguments for the unification of relativistic gravity with standard model interactions on El Naschie's Cantorian space–time. The work proceeds by showing the equivalence between the fundamental principle of local gauge invariance and the local scale invariance of space–time and matter fields undergoing critical behavior on high-energy scales. We focus on the transition boundary between the classical and non-classical regimes, the latter being characterized by generalized scaling laws with continuously varying exponents. Both relativistic gravity and standard model interactions emerge from the underlying geometry of Cantorian space–time near this transition boundary.  相似文献   

7.
In this work, a directed connection between the fractal structure and the fractional calculus has been achieved. The fractional space–time diffusion equation is derived using the comb-like structure as a background model. The solution of the obtained equation will be established for three different interesting cases.  相似文献   

8.
We develop a new method for analysis of fundamental brain waves as recorded by the EEG. To this purpose we introduce a Fractal Variance Function that is based on the calculation of the variogram. The method is completed by using Random Matrix Theory. Some examples are given. We also discuss the link of such formulation with H. Weiss and V. Weiss golden ratio found in the brain, and with El Naschie fractal Cantorian space–time theory.  相似文献   

9.
In this paper we introduce Mohamed El Naschie’s ϵ(∞) Cantorian space–time in connection with stochastic self-similar processes to give a possible explanation of the segregation of the Universe at fixed scale; then by considering the Fanntappie’s transformation group we show how the universe could appear accelerated on Cantorian space–time.  相似文献   

10.
In this paper we analyze classical systems, in which motion is not on a classical continuous path, but rather on a Cantorian one. Starting from El Naschie’s space–time we introduce a mathematical approach based on a potential to describe the interaction system-support. We study some relevant force fields on Cantorian space and analyze the differences with respect to the analogous case on a continuum in the context of Lagrangian formulation. Here we confirm the idea proposed by the first author in dynamical systems on El Naschie’s ϵ() Cantorian space–time that a Cantorian space could explain some relevant stochastic and quantum processes, if the space acts as an harmonic oscillating support, such as that found in Nature. This means that a quantum process could sometimes be explained as a classical one, but on a nondifferential and discontinuous support. We consider the validity of this point of view, that in principle could be more realistic, because it describes the real nature of matter and space. These do not exist in Euclidean space or curved Riemanian space–time, but in a Cantorian one. The consequence of this point of view could be extended in many fields such as biomathematics, structural engineering, physics, astronomy, biology and so on.  相似文献   

11.
The problem of constructing twisted modules for a vertex operator algebra and an automorphism has been solved in particular in two contexts. One of these two constructions is that initiated by the third author in the case of a lattice vertex operator algebra and an automorphism arising from an arbitrary lattice isometry. This construction, from a physical point of view, is related to the space–time geometry associated with the lattice in the sense of string theory. The other construction is due to the first author, jointly with C. Dong and G. Mason, in the case of a multifold tensor product of a given vertex operator algebra with itself and a permutation automorphism of the tensor factors. The latter construction is based on a certain change of variables in the worldsheet geometry in the sense of string theory. In the case of a lattice that is the orthogonal direct sum of copies of a given lattice, these two very different constructions can both be carried out, and must produce isomorphic twisted modules, by a theorem of the first author jointly with Dong and Mason. In this paper, we explicitly construct an isomorphism, thereby providing, from both mathematical and physical points of view, a direct link between space–time geometry and worldsheet geometry in this setting.  相似文献   

12.
A generalization of the Nottale’s scale relativity theory is elaborated: the generalized Schrödinger equation results as an irrotational movement of Navier–Stokes type fluids having an imaginary viscosity coefficient. Then ψ simultaneously becomes wave-function and speed potential. In the hydrodynamic formulation of scale relativity theory, some implications in the gravitational morphogenesis of structures are analyzed: planetary motion quantizations, Saturn’s rings motion quantizations, redshift quantization in binary galaxies, global redshift quantization etc. The correspondence with El Naschie’s ε(∞) space–time implies a special type of superconductivity (El Naschie’s superconductivity) and Cantorian-fractal sequences in the quantification of the Universe.  相似文献   

13.
In this paper, we will analyze the Fantappiè group and its properties in connection with Cantorian space–time. Our attention will be focused on the possibility of extending special relativity. The cosmological consequences of such extension appear relevant, since thanks to the Fantappiè group, the model of the Big Bang and that of stationary state become compatible. In particular, if we abandon the idea of the existence of only one time gauge, since we do not see the whole Universe but only a projection, the two models become compatible. In the end we will see the effects of the projective fractal geometry also on the galactic and extra-galactic dynamics.  相似文献   

14.
The issue of dimensionality and signature of the observed universe is analysed. Neither of the two properties follows from first principles of physics, save for a remarkably fruitful Cantorian fractal spacetime approach pursued by El Naschie, Nottale and Ord. In the present paper, the author's theory of pencil-generated spacetime(s) is invoked to provide a clue. This theory identifies spatial coordinates with pencils of lines and the time dimension with a specific pencil of conics. Already its primitive form, where all pencils lie in one and the same projective plane, implies an intricate connection between the observed multiplicity of spatial coordinates and the (very) existence of the arrow of time. A qualitatively new insight into the matter is acquired, if these pencils are not constrained to be coplanar and are identified with the pencils of fundamental elements of a Cremona transformation in a projective space. The correct dimensionality of space (3) and time (1) is found to be uniquely tied to the so-called quadro-cubic Cremona transformations – the simplest non-trivial, non-symmetrical Cremona transformations in a projective space of three dimensions. Moreover, these transformations also uniquely specify the type of a pencil of fundamental conics, i.e. the global structure of the time dimension. Some physical and psychological implications of these findings are mentioned, and a relationship with the Cantorian model is briefly discussed.  相似文献   

15.
In the present work we show the connections between the topology of four-manifolds, conformal field theory, the mathematical probability theory and Cantorian space-time. In all these different mathematical fields, we find as the main connection the appearance of the golden mean.  相似文献   

16.
Rigorous mathematical formulation of quantum mechanics requires the introduction of a Hilbert space. By contrast, the Cantorian E-infinity approach to quantum physics was developed largely without any direct reference to the afore mentioned mathematical spaces. In the present work we present a novel reinterpretation of basic ε(∞) Cantorian spacetime relations in terms of the Hilbert space of quantum mechanics. In this way, we gain a better understanding of the physical and mathematical structure of quantum spacetime. In particular we show that the two-slit experiment required a definite topology which is consistent with a certain fuzzy Kähler manifold or more generally a Cantorian spacetime manifold. Finally by determining the Euler class of this manifold, we can estimate the most likely number of Higgs particles which may be discovered.  相似文献   

17.
On the one hand, a rigorous mathematical formulation of quantum mechanics requires the introduction of a Hilbert space and as we move to the second quantization, a Fock space. On the other hand, the Cantorian E-infinity approach to quantum physics was developed largely without any direct reference to the afore mentioned mathematical spaces. In the present work we utilize some novel reinterpretations of basic E(∞) Cantorian spacetime relations in terms of the Hilbert space of quantum mechanics. Proceeding in this way, we gain a better understanding of the physico-mathematical structure of quantum spacetime which is at the heart of the paradoxical and non-intuitive outcome of the famous quantum two-slit gedanken experiment.  相似文献   

18.
A three-dimensional Hilbert cube has exactly three dimensions. It can mimic our spatial world on an ordinary observation scale. A four-dimensional Hilbert cube is equivalent to Elnaschie Cantorian spacetime. A very small distance in a very high observable resolution is equivalent to a very high energy spacetime which is inherently Cantorian, non-differentiable and discontinuous. This article concludes that spacetime is a fractal and hierarchical in nature. The spacetime could be modeled by a four-dimensional Hilbert cube. Gravity and electromagnetism are at different levels of the hierarchy. Starting from a simple picture of a four-dimensional cube, a series of higher dimensional polytops can be constructed in a self-similar manner. The resulting structure will resemble a Cantorian spacetime of which the expectation of the Hausdorff dimension equals to 4.23606799 provided that the number of hierarchical iterations is taken to infinity. In this connection, we note that Heisenberg Uncertainty Principle comes into play when we take measurement at different levels of the hierarchy.  相似文献   

19.
The relation between Jones knot polynominals and statistical mechanics is discussed in the light of Cantorian geometry. It is further shown that von Neumanns continuous geometry may be regarded as being a quantum spacetime akin to Cantorian space E (∞) and noncommutative geometry.  相似文献   

20.
In this paper, we introduce generalized super Gabor duals with bounded invertible operators by combining ideas concerning super Gabor frames with the idea of g-duals as proposed by Dehgham and Fard in 2013. Given a super Gabor frame and a bounded invertible operator A, we characterize its generalized super Gabor duals with A, and derive a parametric expression of all its generalized super Gabor duals with A. The perturbation of generalized super Gabor duals is considered as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号