首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Nanoporous anatase TiO2(np-TiO2) electrodes have been developed via the anodization of titanium foils in fluoride containing electrolytes,and its application in rechargeable lithium-ion batteries(LIBs) was investigated. Four different types of np-TiO2 electrodes with different pore diameters of 14.7±8.2 nm, 12.8±6.8 nm, 11.0±5.5, and 26.7±13.6 nm were fabricated for evaluating the effect of nanoporous characteristics on the LIB performance. The discharge capacity of the four battery types 1, 2, 3, and 4 were 132.7 m Ah g-1, 316.7 m Ah g-1, 154.3 m Ah g-1,and 228.4 m Ah g-1, respectively. In addition, these electrodes 1, 2, 3, and 4 exhibited reversible capacity of 106.9 m Ah g-1after 295 th,180.9 m Ahg-1 after 220 th, 126.1 m Ah g-1after 150 th, and 206.7 m Ahg-1after 85 th cycle at a rate of 1 C, respectively. It was noted that the cyclic life of the batteries had an inverse relationship, and the capacity had a proportional relationship to the pore diameter. The enhanced electrochemical performance of the nanoporous electrodes can be attributed to the improved conductivity and the enhanced kinetics of lithium insertion/extraction at electrode/electrolyte interfaces because of the large specific surface area of np-TiO2 electrodes.  相似文献   

2.
In this work, it is reported that the morphology of negative electrodes based on anodized Ti3SiC2 has a strong influence on the electrochemical performance of Li-ion microbatteries. Ti3SiC2 was anodized in an aqueous electrolyte containing hydrofluoric acid to form an oxide film. Two typical porous structures produced at low and high applied potentials were examined by scanning electron microscopy and characterized by X-ray diffraction, mercury intrusion porosimetry, and electrochemical techniques. The power density delivered by the nanolayered structure obtained at 10 V is almost 3 times higher than that obtained from a mesoporous material formed at 60 V. Cyclic voltammetry has been used to explain that this enhanced electrochemical property is related to the higher amount of Li+ stored at the surface of the nanolayered structure.  相似文献   

3.
4.
Journal of Solid State Electrochemistry - The present article describes the innovative combination of freestanding macroporous silicon layers on copper foil collectors and room temperature ionic,...  相似文献   

5.
The use of electrodeposited metal-based nanostructures for electroanalytical applications has recently received widespread attention. There are several approaches to creating nanostructured materials through electrochemical routes that include facile electrodeposition at either untreated or modified electrodes, or through the use of physical or chemical templating methods. This allows the shape, size and composition of the nanomaterial to be readily tuned for the application of interest. The use of such materials is particularly suited to electroanalytical applications. In this mini-review an overview of recently developed nanostructured materials developed through electrochemical routes is presented as well as their electroanalytical applications in areas of biological and environmental importance.  相似文献   

6.
Cellulose - Polyacrylonitrile (PAN)-based carbon precursor is a well-established and researched material for electrodes in energy storage applications due to its good physical properties and...  相似文献   

7.
Zhang  Wenlin  Wang  Yuxin  Lan  Xiaoyan  Huo  Yu 《Research on Chemical Intermediates》2020,46(6):3007-3023
Research on Chemical Intermediates - Functionalized ionic liquid 1-cyanopropy-1-3-methylimidazoliumbis(trifluoromethanesulfonyl)imide (CPMIMTFSI) was synthesized as an electrolyte additive for...  相似文献   

8.
Thermal stability, flammability, and electrochemical performances of the cyclic carbonate-based electrolytes [where γ-butyrolactone (GBL) is a main component (at least 50 vol.%) among of EC and PC with LiBF4] have been examined in comparison with contemporary (EC/EMC, 1:3 vol.%, 1 M LiPF6) electrolyte by DSC, accelerating rate calorimetry (ARC), AC impedance, and cyclic voltammetry (CV). This study shows that GBL-based electrolytes have perfect thermal stability and will improve Li-ion battery safety (including flammability) without performance trade-off with the accurate combination of active materials and separator. Several types of negative electrode materials (such as hard carbon, MCMB, and SWF) have been tested to evaluate GBL-based electrolyte influence on SEI formation and battery performance. Finally, GBL-based electrolytes show not only equal electrochemical performance in comparison to commonly used electrolytes (EC/EMC in this study) but it will notably improve battery safety.  相似文献   

9.
锂离子电池有机电解液材料研究进展   总被引:4,自引:0,他引:4  
综述了锂离子电池有机电解液材料的研究现状。锂离子电池有机电解液主要由电解质锂盐、有机溶剂和添加剂三个部分组成,新型电解质锂盐的研究开发可分为三个方面:(1)LiTFSI及其类似物;(2)络合硼酸锂化合物;(3)络合磷酸锂化合物。有机溶剂的研究工作主要集中在新型有机溶剂的开发上。最重要的添加剂主要有三类:(1)主要用以改善碳负极SEI膜性能的添加剂;(2)过充电保护添加剂;(3)配体添加剂。  相似文献   

10.
A simple and effective way for TiO(2) to be deposited on silicon or indium tin oxide (ITO) substrates has been achieved by using a poly(styrene-block-4-vinyl pyridine) (PS-b-P4VP) block copolymer template. In particular, a mechanism for the formation of TiO(2) within the P4VP phase was developed. Within this model, the TiO(2) deposition occurs by swelling of the protonated P4VP segments followed by transport of Ti precursor, probably protonated Ti(OH)(4) given the low pH conditions used, into the swollen P4VP followed by condensation into TiO(2) during the heating/plasma etch processes. TiO(2) nanostructure morphology is affected by pH and deposition temperatures, because these parameters affect the degree of protonation of P4VP segments and diffusion of the titanium(IV) bis(ammonium lactato)dihydroxide (TALH) precursor into the film. A pH range of 2.1-2.5 for silicon substrates and pH = 2.1 for ITO substrates gave the narrower TiO(2) nanostructures distributions, and deposition at 70 °C gave TiO(2) nanostructures with more regular arrangements and smoother surface than those deposited at room temperature. The use of 1,4-diiodobutane as a P4VP cross-linking compound is demonstrated to be a critical parameter for maintaining good cylindrical surface morphology for both the block copolymer template and the TiO(2) nanostructures.  相似文献   

11.
Electrochemical energy storage systems with high specific energy and power as well as long cyclic stability attract increasing attention in new energy technologies. The principles for rational design of electrodes are discussed to reduce the activation, concentration, and resistance overpotentials and improve the active material efficiency in order to simultaneously achieve high specific energy and power. Three dimensional(3D)nanocomposites are currently considered as promising electrode materials due to their large surface area,reduced electronic and ionic diffusion distances, and synergistic effects. This paper reviews the most recent progress on the synthesis and application of 3D thin film nanoelectrode arrays based on aligned carbon nanotubes(ACNTs) directly grown on metal foils for energy storages and special attentions are paid on our own representative works. These novel 3D nanoelectrode arrays on metal foil exhibit improved electrochemical performances in terms of specific energy, specific power and cyclic stability due to their unique structures.In this active materials coated ACNTs over conductive substrate structures, each component is tailored to address a different demand. The electrochemical active material is used to store energy, while the ACNTs are employed to provide a large surface area to support the active material and nanocable arrays to facilitate the electron transport. The thin film of active materials can not only reduce ion transport resistance by shortening the diffusion length but also make the film elastic enough to tolerate significant volume changes during charge and discharge cycles. The conductive substrate is used as the current collector and the direct contact of the ACNT arrays with the substrate reduces significantly the contact resistance. The principles obtained from ACNT based electrodes are extended to aligned graphene based electrodes. Similar improvements have been achieved which confirms the reliability of the principles obtained. In addition, we also discuss and view the ongoing trends in development of aligned carbon nanostructures based electrodes for energy storage.  相似文献   

12.
Poly (vinylidene fluoride-co-hexafluoropropylene)-based composite polymer electrolyte (CPE) was prepared by phase inversion technique. In this work, we first applied a novel surface-modified sub-micro-sized alumina, PC-401, as ceramic filler. Various electrochemical methods were applied to investigate the electrochemical properties of the polymer electrolytes. We found that the CPE with 10 wt.% PC-401 has excellent electrochemical properties, including the ionic conductivity as high as 0.89 mS cm−1 and the Li-ion transference number of 0.46. Polymer Li-ion batteries using LiFePO4 as cathode active material exhibited excellent cycling and high-temperature performances. PC-401 shows a promising applicability in the preparation of polymer electrolyte with high electrochemical properties.  相似文献   

13.
Conversion-type electrode materials are discussed in this critical review. Most of the conversion materials are significantly less expensive than modern intercalation-type materials, and the materials involved are appreciably abundant in the nature. However, up to now, no practically viable battery with conversion material-based electrodes was reported, as there are several major barriers to a practical employment of these materials. First, material utilization and cell energy performance are seriously compromised by a low conductivity of the most conversion materials and by a substantial electrolyte involvement in the electrochemical process. Second, the conversion reactions usually demonstrate a severe volume effect, and also conversion electrodes interact with electrolyte developing thick and resistant solid electrolyte interphase films; both of these features result in impractically low electrode cyclability. Third, a large lithiation/de-lithiation voltage hysteresis results in impractically low charge/discharge energy efficiency and suggests a severe battery heating in the course of the battery operation. All these problems present serious challenges for the researchers in the field; the approaches for handling these issues are discussed in the review. For the foreseeable future, there are grounds to expect progress in tackling some of these issues. The issue of high voltage hysteresis is a bottleneck, though, and it actually precludes conversion materials from any practical application.  相似文献   

14.
The electrochemical oxidation of formaldehyde over graphene surfaces modified with Pt–Ru co-catalyst is presented. Graphene was chemically converted from graphite and Pt–Ru co-catalyst was electrochemically deposited using cyclic voltammetry. The hybrid surface is prepared using “green approaches” and displayed electrocatalytic activity towards formaldehyde in the form of current oscillations. The current oscillations that were mainly due to adsorption/desorption of carbonaceous oxidative products are a factor of several parameters such as the concentrations of both formaldehyde and supporting electrolyte in solution, the amount of catalyst loading, scan rate of potential, upper potential limit, and the temperature change. CCG/Pt–Ru exhibited higher electrocatalytic activity toward formaldehyde electro-oxidation, and intense electrochemical current oscillations were obtained at relatively low HCHO concentrations compared to other work mentioned in literature for CCG/Pt–Pd.  相似文献   

15.
Insertion characteristics of anatase electrodes were studied on single-crystal and polycrystalline electrodes of different microstructures. The lithium incorporation from propylene carbonate solution containing LiClO4 and Li(CF3SO2)2N was studied by means of cyclic voltammetry (CV), the quartz crystal microbalance (QCM) and the galvanostatic intermittent titration technique (GITT). The electrode microstructure affects both the accessible coefficient x and the reversibility of the process. The highest insertion activity was observed for electrodes composed of crystals with characteristic dimensions of ∼10–8 m. The insertion properties deteriorate for higher as well as for smaller crystal sizes. Enhanced insertion was observed in Li(CF3SO2)2N-containing solutions. Lithium insertion is satisfactorily reversible for mesoscopic electrodes; the reversibility in the case of compact polycrystalline and single-crystal electrodes is poor. The reversibility of the insertion improves with increasing electrolyte concentration. The lithium diffusion coefficient decreases with increasing x and ranges between 10–15 and 10–18 cm2 s–1. Electronic Publication  相似文献   

16.
Journal of Solid State Electrochemistry - A simple and inexpensive successive ionic layer adsorption and reaction (SILAR) method was used for synthesis of ytterbium sulfide (Yb2S3) thin film. The...  相似文献   

17.
State‐of‐the‐art neurorprostheses rely on stiff metallic electrodes to communicate with neural tissues. It was envisioned that a soft, organic electrode coating embedded with functional neural cells will enhance electrode‐tissue integration. To enable such a device, it is necessary to produce a cell scaffold with mechanical properties matched to native neural tissue. A degradable poly(vinyl alcohol) (PVA) hydrogel was tailored to have a range of compressive moduli through variation in macromer composition and initiator amount. A regression model was used to predict the amount of initiator required for hydrogel polymerization with nominal macromer content ranging between 5 and 20 wt %. Hydrogels at 5 and 10 wt % were reliably formed but 15 wt % and above were not able to be fabricated due to the light attenuation properties of the initiator ruthenium at increased concentration. Compressive modulus of hydrogels decreased upon incorporation of biomolecules (sericin and gelatin), however, the bulk stiffness spanned the range required to match neural tissue properties (0.04–20kPa). Neuroglia cells, such as Schwann cells survived and grew within the scaffold. The significant finding of this work is that the PVA‐tyramine system can be tuned to provide a soft degradable scaffold for neural tissue regeneration while presenting bioactive molecules for cellular expansion. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 273–287  相似文献   

18.
Nanostructured bioelectrodes were designed and assembled into a biofuel cell with no separating membrane. The glassy carbon electrodes were modified with mediator-functionalized carbon nanotubes. Ferrocene (Fc) and 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonate) diammonium salt (ABTS) bound chemically to the carbon nanotubes were found useful as mediators of the enzyme catalyzed electrode processes. Glucose oxidase from Aspergillus niger AM-11 and laccase from Cerrena unicolor C-139 were incorporated in a liquid-crystalline matrix-monoolein cubic phase. The carbon nanotubes–nanostructured electrode surface was covered with the cubic phase film containing the enzyme and acted as the catalytic surface for the oxidation of glucose and reduction of oxygen. Thanks to the mediating role of derivatized nanotubes the catalysis was almost ten times more efficient than on the GCE electrodes: catalytic current of glucose oxidation was 1 mA cm−2 and oxygen reduction current exceeded 0.6 mA cm−2. The open circuit voltage of the biofuel cell was 0.43 V. Application of carbon nanotubes increased the maximum power output of the constructed biofuel cell to 100 μW cm−2 without stirring of the solution which was ca. 100 times more efficient than using the same bioelectrodes without nanotubes on the electrode surface.  相似文献   

19.
Four functionalized ionic liquids based on imidazolium cations with vinyl or alllyl group and TFSI? anion were synthesized as electrolyte additives for high-voltage Li-ion battery to stabilize carbonate-based electrolytes on the surface of 5 V class cathode materials. The electrochemical behaviors and surface morphology of LiNi0.5Mn1.5O4 cathode had been investigated by cyclic voltammetry, charge–discharge test, X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM), respectively. Cycle life and rate performance of the Li/LiNi0.5Mn1.5O4 cells containing 1.2 M LiPF6 in ethylene carbonate/ethyl methyl carbonate can be improved by adding 1-allyl-3-vinyl imidazolium bis(trifluoromethanesulphonyl)imide ([AVIm][TFSI]). The addition of 3 wt.% [AVIm][TFSI] results in high discharge capacity of above 130 mAh g?1. Surface analysis of the cathode material (XPS and SEM) suggested that a stable and compact polymer film was formed on the LiNi0.5Mn1.5O4 cathode by electroinitiated polymerization of imidazolium cation with vinyl and allyl group.  相似文献   

20.
For future Li-ion battery applications the search for both new design concepts and materials is necessary. The electrodes of the batteries are always in contact with electrolytes, which are responsible for the transport of Li ions during the charging and discharging process. A broad range of materials is considered for both electrolytes and electrodes so that very different chemical interactions between them can occur, while good cycling behavior can only be obtained for stable solid-electrolyte interfaces. X-ray photoelectron spectroscopy (XPS) was used to study the most relevant interactions between various electrode materials in contact with different electrolyte solutions. It is shown how XPS can provide useful information on reactivities and thus preselect suitable electrode/electrolyte combinations, prior to electrochemical performance tests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号