首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a certified reduced basis (RB) method for the heat equation and wave equation. The critical ingredients are certified RB approximation of the Laplace transform; the inverse Laplace transform to develop the time-domain RB output approximation and rigorous error bound; a (Butterworth) filter in time to effect the necessary “modal” truncation; RB eigenfunction decomposition and contour integration for Offline–Online decomposition. We present numerical results to demonstrate the accuracy and efficiency of the approach.  相似文献   

2.
A new a posteriori error estimate is derived for the stationary convection–reaction–diffusion equation. In order to estimate the approximation error in the usual energy norm, the underlying bilinear form is decomposed into a computable integral and two other terms which can be estimated from above using elementary tools of functional analysis. Two auxiliary parameter-functions are introduced to construct such a splitting and tune the resulting bound. If these functions are chosen in an optimal way, the exact energy norm of the error is recovered, which proves that the estimate is sharp. The presented methodology is completely independent of the numerical technique used to compute the approximate solution. In particular, it is applicable to approximations which fail to satisfy the Galerkin orthogonality, e.g. due to an inconsistent stabilization, flux limiting, low-order quadrature rules, round-off and iteration errors, etc. Moreover, the only constant that appears in the proposed error estimate is global and stems from the Friedrichs–Poincaré inequality. Numerical experiments illustrate the potential of the proposed error estimation technique.  相似文献   

3.
A time discrete scheme is used to approximate the solution toa phase field system of Penrose–Fife type with a non-conservedorder parameter. An a posteriori error estimate is presentedthat allows the estimation of the difference between continuousand semidiscrete solutions by quantities that can be calculatedfrom the approximation and given data.  相似文献   

4.
In this Note, we present an efficient method to approximate the expectation of the response of a one-dimensional elliptic problem with stochastic inputs. In conventional methods, the computational effort and cost of the approximation of the response can be dramatic. Our method presented here is based on the Karhunen–Loève (K-L) expansion of the inverse of the diffusion parameter, allowing us to build a base of random variables in reduced numbers, from which we construct a projected solution. We show that the expectation of this projected solution is a good approximation, and give an a priori error estimate. A numerical example is presented to show the efficiency of this approach.  相似文献   

5.
A combination method of two-grid discretization approach with a recent finite element variational multiscale algorithm for simulation of the incompressible Navier–Stokes equations is proposed and analyzed. The method consists of a global small-scale nonlinear Navier–Stokes problem on a coarse grid and local linearized residual problems in overlapped fine grid subdomains, where the numerical form of the Navier–Stokes equations on the coarse grid is stabilized by a stabilization term based on two local Gauss integrations at element level and defined by the difference between a consistent and an under-integrated matrix involving the gradient of velocity. By the technical tool of local a priori estimate for the finite element solution, error bounds of the discrete solution are estimated. Algorithmic parameter scalings are derived. Numerical tests are also given to verify the theoretical predictions and demonstrate the effectiveness of the method.  相似文献   

6.
For implicit Runge-Kutta methods intended for stiff ODEs or DAEs, it is often difficult to embed a local error estimating method which gives realistic error estimates for stiff/algebraic components. If the embedded method's stability function is unbounded at z=∞, stiff error components are grossly overestimated. In practice, some codes ‘improve’ such inadequate error estimates by premultiplying the estimate by a ‘filter’ matrix which damps or removes the large, stiff error components. Although improving computational performance, this technique is somewhat arbitrary and lacks a sound theoretical backing. In this scientific note we resolve this problem by introducing an implicit error estimator. It has the desired properties for stiff/algebraic components without invoking artificial improvements. The error estimator contains a free parameter which determines the magnitude of the error, and we show how this parameter is to be selected on the basis of method properties. The construction principles for the error estimator can be adapted to all implicit Runge-Kutta methods, and a better agreement between actual and estimated errors is achieved, resulting in better performance.  相似文献   

7.
We consider the a posteriori error estimates for finite element approximations of the Stokes–Darcy system. The finite element spaces adopted are the Hood–Taylor element for the velocity and the pressure in fluid region and conforming piecewise quadratic element for the pressure in porous media region. The a posteriori error estimate is based on a suitable evaluation on the residual of the finite element solution. It is proven that the a posteriori error estimate provided in this paper is both reliable and efficient. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, a posteriori error estimation and mesh adaptation approach for thin plate and shell structures of through-the-thickness crack is presented. This method uses the extended isogeometric analysis (XIGA) based on PHT-splines (Polynomial splines over Hierarchical T-meshes), which is abbreviated as XIGA-PHT. In XIGA-PHT, the isogeometric displacement approximation is locally enriched with enrichment functions, which efficiently capture the displacement discontinuity across the crack face as well as the stress singularity in the vicinity of the crack tip. On the one hand, the rotational degrees of freedom (RDOFs) are not required in Kirchhoff–Love theory, which drastically reduces the complexity of enrichment mode and computational scale for crack analysis. On the other hand, the PHT-splines basis functions can automatically satisfy the requirement of C1-continuity for the Kirchhoff–Love theory. Moreover, the PHT-splines facilitate the local refinement, which is the deficiency of NURBS-based isogeometric formulations. The local refinement is highly suitable for adaptive analysis. The stress recovery-based posteriori error estimator combined with the superconvergent patch recovery (SPR) technique is used to evaluate the approximate local discretization error. A new strategy for selecting enriched recovered functions in the enriched areas was proposed. Special functions extracted from the asymptotic stress solutions are applied to obtain the recovered stress field in the enriched area. The results of stress intensity factors or J-integral values obtained by the adaptive XIGA-PHT are compared with reference solutions. Several thin plate and shell illustrative examples demonstrate the effectiveness and accuracy of the proposed adaptive XIGA-PHT.  相似文献   

9.
We present rigorous a posteriori error bounds for the Empirical Interpolation Method (EIM). The essential ingredients are (i) analytical upper bounds for the parametric derivatives of the function to be approximated, (ii) the EIM “Lebesgue constant,” and (iii) information concerning the EIM approximation error at a finite set of points in parameter space. The bound is computed “off-line” and is valid over the entire parameter domain; it is thus readily employed in (say) the “on-line” reduced basis context. We present numerical results that confirm the validity of our approach.  相似文献   

10.
We develop an anisotropic perfectly matched layer (PML) method for solving the time harmonic electromagnetic scattering problems in which the PML coordinate stretching is performed only in one direction outside a cuboid domain. The PML parameters such as the thickness of the layer and the absorbing medium property are determined through sharp a posteriori error estimates. Combined with the adaptive finite element method, the proposed adaptive anisotropic PML method provides a complete numerical strategy to solve the scattering problem in the framework of FEM which produces automatically a coarse mesh size away from the fixed domain and thus makes the total computational costs insensitive to the choice of the thickness of the PML layer. Numerical experiments are included to illustrate the competitive behavior of the proposed adaptive method.  相似文献   

11.
Based on radial basis functions approximation, we develop in this paper a new com-putational algorithm for numerical differentiation. Under an a priori and an a posteriori choice rules for the regularization parameter, we also give a proof on the convergence error estimate in reconstructing the unknown partial derivatives from scattered noisy data in multi-dimension. Numerical examples verify that the proposed regularization strategy with the a posteriori choice rule is effective and stable to solve the numerical differential problem. *The work described in this paper was partially supported by a grant from CityU (Project No. 7001646) and partially supported by the National Natural Science Foundation of China (No. 10571079).  相似文献   

12.
In the present paper, the Cauchy problem for the Laplace equation with nonhomogeneous Neumann data in an infinite “strip” domain is considered. This problem is severely ill-posed, i.e., the solution does not depend continuously on the data. A conditional stability result is given. A new a posteriori Fourier method for solving this problem is proposed. The corresponding error estimate between the exact solution and its regularization approximate solution is also proved. Numerical examples show the effectiveness of the method and the comparison of numerical effect between the a posteriori and the a priori Fourier method are also taken into account.  相似文献   

13.
The two-grid method is studied for solving a two-dimensional second-order nonlinear hyperbolic equation using finite volume element method. The method is based on two different finite element spaces defined on one coarse grid with grid size H and one fine grid with grid size h, respectively. The nonsymmetric and nonlinear iterations are only executed on the coarse grid and the fine grid solution can be obtained in a single symmetric and linear step. It is proved that the coarse grid can be much coarser than the fine grid. A prior error estimate in the H1-norm is proved to be O(h+H3|lnH|) for the two-grid semidiscrete finite volume element method. With these proposed techniques, solving such a large class of second-order nonlinear hyperbolic equations will not be much more difficult than solving one single linearized equation. Finally, a numerical example is presented to validate the usefulness and efficiency of the method.  相似文献   

14.
A numerical method using finite elements for the spatial discretization and the Crank–Nicolson scheme for the time stepping is applied to a partial differential equation problem involving thermoelastic contact. The Crank–Nicolson scheme is interpreted as a low order continuous Galerkin method. By exploiting the variational framework inherent in this approach, an a posteriori error estimate is derived. This estimate gives a bound on the approximation error that depends on computable quantities such as the mesh parameters, time step and numerical solution. In this paper, the a posteriori estimate is used to develop a time step refinement strategy. Several computational examples are included that demonstrate the performance of the method and validity of the estimate.  相似文献   

15.
The paper is devoted to the analysis of the discontinuous Galerkin finite element method (DGFEM) applied to the space semidiscretization of a nonlinear nonstationary convection-diffusion problem with mixed Dirichlet-Neumann boundary conditions. General nonconforming meshes are used and the NIPG, IIPG and SIPG versions of the discretization of diffusion terms are considered. The main attention is paid to the impact of the Neumann boundary condition prescribed on a part of the boundary on the truncation error in the approximation of the nonlinear convective terms. The estimate of this error allows to analyse the error estimate of the method. The results obtained represent the completion and extension of the analysis from V. Dolej?í, M. Feistauer, Numer. Funct. Anal. Optim. 26 (2005), 349–383, where the truncation error in the approximation of the nonlinear convection terms was proved only in the case when the Dirichlet boundary condition on the whole boundary of the computational domain was considered.  相似文献   

16.
We use asymptotically optimal adaptive numerical methods (here specifically a wavelet scheme) for snapshot computations within the offline phase of the Reduced Basis Method (RBM). The resulting discretizations for each snapshot (i.e., parameter-dependent) do not permit the standard RB ‘truth space’, but allow for error estimation of the RB approximation with respect to the exact solution of the considered parameterized partial differential equation. The residual-based a posteriori error estimators are computed by an adaptive dual wavelet expansion, which allows us to compute a surrogate of the dual norm of the residual. The resulting adaptive RBM is analyzed. We show the convergence of the resulting adaptive greedy method. Numerical experiments for stationary and instationary problems underline the potential of this approach.  相似文献   

17.
Andreas Veeser The dual weighted residual (DWR) method yields reliable a posteriorierror bounds for linear output functionals provided that theerror incurred by the numerical approximation of the dual solutionis negligible. In that case, its performance is generally superiorthan that of global ‘energy norm’ error estimatorswhich are ‘unconditionally’ reliable. We presenta simple numerical example for which neglecting the approximationerror leads to severe underestimation of the functional error,thus showing that the DWR method may be unreliable. We proposea remedy that preserves the original performance, namely a DWRmethod safeguarded by additional asymptotically higher ordera posteriori terms. In particular, the enhanced estimator isunconditionally reliable and asymptotically coincides with theoriginal DWR method. These properties are illustrated via theaforementioned example.  相似文献   

18.
In this article, a spatial two-grid finite element (TGFE) algorithm is used to solve a two-dimensional nonlinear space–time fractional diffusion model and improve the computational efficiency. First, the second-order backward difference scheme is used to formulate the time approximation, where the time-fractional derivative is approximated by the weighted and shifted Grünwald difference operator. In order to reduce the computation time of the standard FE method, a TGFE algorithm is developed. The specific algorithm is to iteratively solve a nonlinear system on the coarse grid and then to solve a linear system on the fine grid. We prove the scheme stability of the TGFE algorithm and derive a priori error estimate with the convergence result Ot2 + hr + 1 − η + H2r + 2 − 2η) . Finally, through a two-dimensional numerical calculation, we improve the computational efficiency and reduce the computation time by the TGFE algorithm.  相似文献   

19.
The r‐Laplacian has played an important role in the development of computationally efficient models for applications, such as numerical simulation of turbulent flows. In this article, we examine two‐level finite element approximation schemes applied to the Navier‐Stokes equations with r‐Laplacian subgridscale viscosity, where r is the order of the power‐law artificial viscosity term. In the two‐level algorithm, the solution to the fully nonlinear coarse mesh problem is utilized in a single‐step linear fine mesh problem. When modeling parameters are chosen appropriately, the error in the two‐level algorithm is comparable to the error in solving the fully nonlinear problem on the fine mesh. We provide rigorous numerical analysis of the two‐level approximation scheme and derive scalings which vary based on the coefficient r, coarse mesh size H, fine mesh size h, and filter radius δ. We also investigate the two‐level algorithm in several computational settings, including the 3D numerical simulation of flow past a backward‐facing step at Reynolds number Re = 5100. In all numerical tests, the two‐level algorithm was proven to achieve the same order of accuracy as the standard one‐level algorithm, at a fraction of the computational cost. © 2011 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2011  相似文献   

20.
We consider a 2 time scale nonlinear system of ordinary differential equations. The small parameter of the system is the ratio ϵ of the time scales. We search for an approximation involving only the slow time unknowns and valid uniformly for all times at order O(ϵ2). A classical approach to study these problems is Tikhonov's singular perturbation theorem. We develop an approach leading to a higher order approximation using the renormalization group (RG) method. We apply it in 2 steps. In the first step, we show that the RG method allows for approximation of the fast time variables by their RG expansion taken at the slow time unknowns. Next, we study the slow time equations, where the fast time unknowns are replaced by their RG expansion. This allows to rigorously show the second order uniform error estimate. Our result is a higher order extension of Hoppensteadt's work on the Tikhonov singular perturbation theorem for infinite times. The proposed procedure is suitable for problems from applications, and it is computationally less demanding than the classical Vasil'eva‐O'Malley expansion. We apply the developed method to a mathematical model of stem cell dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号