首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 673 毫秒
1.
Complexation mechanism, binding properties and thermodynamic parameters of supramolecular chirality induction in the achiral host molecule, syn (face-to-face conformation) ethane-bridged bis(zinc porphyrin), upon interaction with chiral monoamine and monoalcohol guests have been studied by means of the UV-vis, CD, (1)H NMR, and ESI MS techniques. It was found that the chirogenesis process includes three major equilibria steps: the first guest ligation to a zinc porphyrin subunit of the host (K(1)), syn to anti conformational switching (K(S)), and further ligation by a second guest molecule to the remaining ligand-free zinc porphyrin subunit (K(2)), thus forming the final bis-ligated species possessing supramolecular chirality. The validity of this equilibria model is confirmed by the excellent match between the calculated and experimentally observed spectral parameters of the bis-ligated species. The second ligation proceeds in a cooperative manner as K(2) > K(1) for all supramolecular systems studied, regardless of the structure of the chiral ligand used. The binding properties are highly dependent on the nature of the functional group (amines are stronger binders than alcohols) and on the structure of the chiral guests (primary and aliphatic amines have overall binding constant values greater than those of secondary and aromatic amines, respectively).  相似文献   

2.
A general microscale protocol for the determination of absolute configurations of primary amino groups or secondary hydroxyl groups linked to a single stereogenic center is described. The chiral substrates are linked to the achiral trifunctional bidentate carrier molecule (3-aminopropylamino)acetic acid (1, H(2)NCH(2)CH(2)CH(2)NHCH(2)COOH) and the resultant conjugates are then complexed with dimeric zinc porphyrin host 2 giving rise to 1:1 host/guest sandwiched complexes. These complexes exhibit exciton-coupled bisignate CD spectra due to stereodifferentiation leading to preferred porphyrin helicity. Since the chiral sense of twist between the two porphyrins in the complex is dictated by the stereogenic center of the substrate, the sign of the couplet determines the absolute configuration at this center. The twist of the porphyrin tweezer in the complex can be predicted from the relative steric sizes of the groups flanking the stereogenic center, such that the bulkier group protrudes from the complex sandwich. In certain alpha-hydroxy esters and alpha-amino esters, electronic factors and hydrogen bonding govern the preferred conformation of the complex, and hence the CD spectra.  相似文献   

3.
The optical activity of the inclusion compound formed when fluorescein is incorporated in β-cyclodextrin has been studied by means of circularly polarized luminescence spectroscopy. The chiral host molecule is capable of inducing chirality in the achiral guest molecule upon formation of the 1:1 adduct.  相似文献   

4.
《Liquid crystals》1999,26(9):1301-1305
Lyotropic liquid crystals can exhibit phase chirality. The mechanism behind the transfer of chirality between a chiral dopant and a liquid crystalline host phase is still under discussion. Our own recent results and proposals are the following. Lyotropic phase chirality can exist even at very low concentrations of chiral dopants, with less than 1 chiral dopant per 50 micelles. There is evidence for an intramicellar double twist which could be due to the induction of chiral conformations in the achiral surfactant chains. The chirality of arbitrary molecules can be quantified by means of the 'Hausdorff distance'. Increasing chirality of a dopant does not necessarily imply increasing helical twisting power, and molecular similarity between chiral guest and achiral host is essential for effective chirality transfer.  相似文献   

5.
Abstract

Three cases are described where chirality is recognized by achiral molecules, where chirality is induced into achiral compounds through interactions with chiral compounds, and lastly where induced chirality in the solid-state is utilized for an enantio-selective photoreaction. In the first instance, the thermodynamically and kinetically preferred diastereoisomer of an optically labile chromium complex depended on the nature of the achiral solvent. In the second case, for the first time 1,2-chloroethane was trapped and observed in a chiral near-eclipsed form and 1-chloropropane in the truly eclipsed form at room temperature in a 1:1 inclusion complex with an optically active host molecule. Finally, induced chirality in a prochiral compound in the solid-state was successfully employed in an enantio-selective photoreaction. In the two cases, solid-state CD provided valuable information.  相似文献   

6.
《中国化学快报》2022,33(11):4900-4903
A novel type of host–guest recognition systems have been developed on the basis of a Au(III) molecular tweezer receptor and chiral Pt(II) guests. The complementary host–guest motifs display high non-covalent binding affinity (Ka: ~104 L/mol) due to the participation of two-fold intermolecular π–π stacking interactions. Both phosphorescence and chirality signals of the Pt(II) guests strengthen in the resulting host–guest complexes, because of the cooperative rigidifying and shielding effects rendered by the tweezer receptor. Their intensities can be reversibly switched toward pH changes, by taking advantage of the electronic repulsion effect between the protonated form of tweezer receptor and the positive-charged guests in acidic environments. Overall, the current study demonstrates the feasibility to enhance and modulate phosphorescence and chirality signals simultaneously via molecular tweezer-based host–guest recognition.  相似文献   

7.
A general chiroptical protocol for determination of absolute configuration of secondary amines including acyclic and cyclic aliphatic amines, aromatic amines, amino acids, and amino alcohols is described. The chiral substrate is linked to the achiral carrier moiety (3-N-Boc-amino-propyl-N-Boc-amino)acetic acid 1 (BocHNCH(2)CH(2)CH(2)BocNCH(2)COOH), which after deprotection, yields a bidentate conjugate, capable of forming a 1:1 host/guest complex with dimeric zinc porphyrin host 2. As in the cases of primary amines and secondary alcohols reported earlier, the complexation of secondary amine conjugates to porphyrin tweezer host 2 represents a stereodifferentiating process, where the large (L) group at the stereogenic center (assigned on the basis of conformational energies A value) protrudes from the porphyrin binding pocket. This leads to formation of host/guest complexes with a preferred porphyrin helicity that exhibit intense exciton split CD spectra. It was found that the chiral sense of porphyrin twist is clearly controlled by the stereogenic center despite the Z/E conformational complexity around the tertiary amide bond of secondary amine conjugates that has greatly hampered previous configurational assignments. Thus, in cases where there is no ambiguity regarding the relative steric size of substituents, the observed CD couplet can be applied for straightforward assignment of absolute configurations. In addition, to extend the application to more difficult cases a molecular mechanics calculation approach using the Merck Molecular Force Field (MMFFs) was developed; this provides conformational information of host/guest complexes and leads to prediction of preferred porphyrin helicity independent of conformational A values. This chiroptical protocol in combination with molecular modeling represents a general method for configurational assignments of secondary amines.  相似文献   

8.
A structural study of complexes formed between a dimeric zinc porphyrin tweezer (host) and chiral monoalcohols and monoamines derivatized by a bidentate carrier molecule (guest) confirmed that their CD couplets arise from the preferred porphyrin helicity of 1:1 host-guest complexes. NMR experiments and molecular modeling of selected tweezer complexes revealed that the preferred conformation is the one in which the L (larger) group protrudes from the porphyrin sandwich; this preferred helicity of the complex determines the CD of the complexes. It was found that the porphyrin ring-current induced (1)H chemical shifts and molecular modeling studies of the complex lead to the assignments of relative steric size of the L (large)/M (medium) substituents attached to the stereogenic center. The assignments, in turn, are correlated with the sign of the CD exciton couplet that establishes the absolute configuration at the stereogenic center. Variable-temperature NMR experiments proved that the observed increase in CD amplitude at lower temperatures derives from conformational changes in the preferred offset geometry between two porphyrin rings.  相似文献   

9.
Two new supramolecular complexes consisting of an achiral bisporphyrin host and a chiral diamine guest are reported. One shows a remarkably high amplitude bisignate CD signal while the other one shows a very low value. X-ray structure and other spectroscopic investigations of the tweezer complexes clearly rationalize the origin of the optical activity that has so far remained an unresolved issue.  相似文献   

10.
A new chiral chromophoric host 1, possessing a 4-(N,N-dimethylamino)benzoate (DMAB) group tethered to a chiral bicyclic guanidinium subunit, was synthesized and applied to the probe for sulfate anion. Host 1 showed typical successive 1:1 and 2:1 host:guest complexation behavior toward the divalent sulfate anion, as revealed by UV-vis, CD, fluorescence, and 1H NMR spectroscopic studies. The DMAB chromophore was shown to be a sensitive CD spectral probe for assessing not only the complexation behavior but also complex stoichiometry and structure. The stepwise 1:1 and 2:1 complexation constants (K1 and K2) were determined as 1.53 x 10(6) and 4.84 x 10(4) M(-1), respectively, by NMR titration in CD3CN. The CD exciton chirality method allowed us to determine the chiral sense (spatial arrangement) of the two DMAB moieties in the 2:1 complex as negative (counterclockwise). The dual fluorescence behavior of DMAB was employed for elucidating the role of the countercation upon complexation of host 1 with sulfates possessing lipophilic countercation(s) such as tetrabutylammonium.  相似文献   

11.
New linear host (1) and cyclic hosts (2 and 3), which have galactopyranose skeletons as chiral origins and oxyethylenes skeletons as binding sites, were designed based on the structural features extracted from the fructo-oligosaccharide derivatives, having a large chiral discrimination ability, and were then synthesized. These hosts showed chiral discrimination toward chiral organic ammonium salts. For example, the chiral discrimination ability (the ratio of association constants: K(R)/K(S)) of host 1, which has the highest value among them, was K(R)/K(S) = 3 for Trp-O-(i)Pr(+) and K(R)/K(S) = 0.7 for 1-(1-naphthyl)ethylammonium (NEA(+)) at 298 K in CHCl(3). It was clarified that host 1 changed the conformation from a linear structure to the pseudo-ring structure by complexation with cations such as alkali metallic ions and chiral organic ammonium ions. The (1)H NMR induced shifts of host 1 by adding the NEA(+) guests showed that the host-guest complex structures are clearly different, depending upon the chirality of the guest; in the complex with (R)-NEA(+), the naphthyl group of the guest is located above the oxyethylene skeleton of the host and in the complex with (S)-NEA(+), and the naphthyl group is located between the edges of the pseudo-ring of the host. The clearly different structure of the complex of host 1 with NEA(+) may be caused by the dynamic molecular recognition, thus the induced-fitting mechanism.  相似文献   

12.
The contradiction between the rising demands of optical chirality sensing and the failure in chiral detection of cryptochiral compounds encourages researchers to find new methods for chirality amplification. Inspired by planar chirality and the host–guest recognition of pillararenes, we establish a new concept for amplifying CD signals of cryptochiral molecules by pillararene host–guest complexation induced chirality amplification. The planar chirality of pillararenes is induced and stabilized in the presence of the chiral guest, which makes the cryptochiral molecule detectable by CD spectroscopy. Several chiral guests are selected in these experiments and the mechanism of chiral amplification is studied with a non-rotatable pillararene derivative and density functional theory calculations. We believe this work affords deeper understanding of chirality and provides a new perspective for chiral sensing.  相似文献   

13.
We report quantum dynamical simulations for the laser controlled isomerization of 1-(2-cis-fluoroethenyl)-2-fluorobenzene based on one-dimensional electronic ground and excited state potentials obtained from (TD)DFT calculations. 1-(2-cis-fluoroethenyl)-2-fluorobenzene supports two chiral and one achiral atropisomers, the latter being the most stable isomer at room temperature. Using a linearly polarized IR laser pulse the molecule is excited to an internal rotation around its chiral axis, i.e. around the C-C single bond between phenyl ring and ethenyl group, changing the molecular chirality. A second linearly polarized laser pulse stops the torsion to prepare the desired enantiomeric form of the molecule. This laser control allows the selective switching between the achiral and either the left- or right-handed form of the molecule. Once the chirality is "switched on" linearly polarized UV laser pulses allow the selective change of the chirality using the electronic excited state as intermediate state.  相似文献   

14.
The dynamics in the host-guest complexes of the molecular tweezers 1 a,b and clips 2 a,b with 1,2,4,5-tetracyanobenzene (TCNB, 3) and tropylium tetrafluoroborate (4) as guest molecules were analyzed by temperature-dependent 1H NMR spectroscopy. The TCNB complexes of tweezers 1 a,b were found to be particularly stable (dissociation barrier: DeltaG(++)=16.8 and 15.7 kcal mol(-1), respectively), more stable than the TCNB complexes of clips 2 a,b and the tropylium complex of tweezer 1 b (dissociation barrier: DeltaG(++)=12.4, 11.2, and 12.3 kcal mol(-1), respectively). A detailed analysis of the kinetic and thermodynamic data (especially the negative entropies of activation found for complex dissociation) suggests that in the transition state of dissociation the guest molecule is still clipped between the aromatic tips of the host molecule. The 1H NMR analysis of the TCNB complexes 3@1 b and 3@2 a at low temperatures (T<-80 degrees C) showed that 3 undergoes fast rotation inside the cavity of tweezer 1 b or clip 2 a (rotational barrier: DeltaG( not equal)=11.7 and 8.3 kcal mol(-1), respectively). This rotation of a guest molecule inside the host cavity can be considered to be the dynamic equilibration of noncovalent conformers. In the case of clip complex 3@2 a the association and rotational barriers are smaller by DeltaDeltaG(++)=3-4 kcal mol(-1) than those in tweezer complexes 3@1 a,b. This can be explained by the more open topology of the trimethylene-bridged clips compared to the tetramethylene-bridged tweezers. Finally, the bromo substituents in the newly prepared clip 2 b have a substantial effect on the kinetics and thermodynamics of complex formation. Clip 2 b forms weaker complexes with (TCNB, 3) and tetracyanoquinodimethane (TCNQ, 12) and a more stable complex with 2,4,7-trinitrofluoren-9-ylidene (TNF, 13) than the parent clip 2 a. These results can be explained by a less negative electrostatic potential surface (EPS) inside the cavity and a larger van der Waals contact surface of 2 b compared to 2 a. In the case of the highly electron-deficient guest molecules TCNB and TCNQ the attractive electrostatic interaction is predominant and hence responsible for the thermodynamic complex stability, whereas in the case of TNF with its extended pi system, dispersion forces are more important for host-guest binding.  相似文献   

15.
The contradiction between the rising demands of optical chirality sensing and the failure in chiral detection of cryptochiral compounds encourages researchers to find new methods for chirality amplification. Inspired by planar chirality and the host–guest recognition of pillararenes, we establish a new concept for amplifying CD signals of cryptochiral molecules by pillararene host–guest complexation induced chirality amplification. The planar chirality of pillararenes is induced and stabilized in the presence of the chiral guest, which makes the cryptochiral molecule detectable by CD spectroscopy. Several chiral guests are selected in these experiments and the mechanism of chiral amplification is studied with a non‐rotatable pillararene derivative and density functional theory calculations. We believe this work affords deeper understanding of chirality and provides a new perspective for chiral sensing.  相似文献   

16.
17.
The absolute configurations of 1,n-glycols (n = 2-12, 16) bearing two chiral centers were rapidly determined via exciton-coupled circular dichroism (ECCD) using a tris(pentafluorophenyl)porphyrin (TPFP porphyrin) tweezer system in a nonempirical fashion devoid of chemical derivatization. A unique "side-on" approach of the porphyrin tweezer relative to the diol guest molecule is suggested as the mode of complexation.  相似文献   

18.
We describe a quantitative analysis of the complexation-induced inversion of a screw-sense preference based on a conformationally dynamic double-helix structure in a macrocycle. The macrocycle is composed of two twisting units (terephthalamide), which are spaced by two strands (1,3-bis(phenylethynyl)benzene), and is designed to generate a double-helix structure through twisting about a C2 axis in a conrotatory manner. The attachment of chiral auxiliaries to the twisting units induces a helical preference for a particular sense of (M)- or (P)-helicity through the intramolecular transmission of chirality to dynamic double helices. The twisting unit can also act as a binding site for capturing a guest molecule, and, in a complexed state, the preferred screw sense of the dynamic double-helix structure is reversed to exhibit the contrary preference. We quantitatively monitored the complexation-induced inversion of the screw-sense preference using 1H NMR spectroscopy, which enabled us to observe independently two species with (M)- or (P)-helicity in both the absence and presence of a guest molecule. Inversion of the screw-sense preference was induced upon complexation with an achiral guest as well as a chiral guest.  相似文献   

19.
In this study, we present calculations of the circular dichroism (CD) spectra of complexes between achiral and chiral molecules. Nonzero rotational strengths for transitions of the nonchiral molecule are induced by interactions between the two molecules, which cause electronic and/or structural perturbations of the achiral molecule. We investigate if the chiral molecule (environment) can be represented only in terms of its frozen electron density, which is used to generate an effective embedding potential. The accuracy of these calculations is assessed in comparison to full supermolecular calculations. We can show that electronic effects arising from specific interactions between the two subsystems can reliably be modeled by the frozen-density representation of the chiral molecule. This is demonstrated for complexes of 2-benzoylbenzoic acid with (-)-(R)-amphetamine and for a nonchiral, artificial amino acid receptor system consisting of ferrocenecarboxylic acid bound to a crown ether, for which a complex with l-leucine is studied. Especially in the latter case, where multiple binding sites and interactions between receptor and target molecule exist, the frozen-density results compare very well with the full supermolecular calculation. We also study systems in which a cyclodextrin cavity serves as a chiral host system for a small, achiral molecule. Problems arise in that case because of the importance of excitonic couplings with excitations in the host system. The frozen-density embedding cannot describe such couplings but can only capture the direct effect of the host electron density on the electronic structure of the guest. If couplings play a role, frozen-density embedding can at best only partially describe the induced circular dichroism. To illustrate this problem, we finally construct a case in which excitonic coupling effects are much stronger than direct interactions of the subsystem densities. The frozen density embedding is then completely unsuitable.  相似文献   

20.
Interaction of the achiral syn (face-to-face) conformer of the ethane-bridged bis(zinc octaethylporphyrin) with the enantiopure 1,2-diaminocyclohexane results in the exclusive formation of a supramolecular chiral tweezer. This 1:1 host-guest complex exhibits remarkable stability in both solution (even upon photoexcitation) and solid-state phases, with a high degree of optical activity arising from the two-point interaction mode and optimal spatial geometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号