首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 75 毫秒
1.
史林启 《高分子科学》2017,35(11):1328-1341
Inspired by structures of antenna-reaction centers in photosynthesis, the complex micelle was prepared from zinc tetra-phenyl porphyrin (ZnTPP), fullerene derivative (PyC60) and poly(ethylene glycol)-block-poly(ε-caprolactone) (PEG-b-PCL). The core-shell structure made the hydrophobic donor-acceptor system work in aqueous. In micellar core, coordination interaction occurred between ZnTPP and PyC60 molecules which ensured the enhanced energy migration from the donor to the acceptor. The enhanced interaction between porphyrin and fullerene was confirmed by absorption, steady-state fluorescence and transient fluorescence. The generation of singlet oxygen and superoxide radical was detected by iodide method and reduction of nitro blue tetrazolium, respectively, which confirmed that electron transfer reaction in the complex micellar core occurred. Moreover, the complex micelle exhibited effective electron transfer performance in photodebromination of 2,3-dibromo-3-phenylpropionic acid. The complex micellar structure endowed the donor-acceptor system with improved stability under irradiation. This strategy could be helpful for designing new electron transfer platform and artificial photosynthetic system.  相似文献   

2.
The cholesterol-bonded fullerene and porphyrin derivatives were synthesised and characterised. Donor–acceptor thin films were self-assembled through the interaction between cyclodextrin and the cholesterol groups on porphyrin and fullerene derivatives. These uniform films were characterised by ultraviolet–visible and fluorescence spectroscopies. Scanning electron microscopy indicated that the self-assembled film had a chain-like fibre structure with the chains having a diameter of about 50 nm. The intermolecular interaction between chromophores and the formation of complex based on cholesterol and cyclodextrin were proven by the quenching of fluorescence due to the charge transfer from porphyrin moieties to the fullerene units.  相似文献   

3.
Electroabsorption and electrofluorescence spectra of a fullerene derivative, C60(C18)2, and its mixture with zinc-tetraphenylporphyrin (ZnTPP) have been measured by using electric field modulation spectroscopy. The change in dipole moment is significant in the electroabsorption spectra both of C60(C18)2 and of a complex composed of C60(C18)2 and ZnTPP, indicating that the excited states both of C60(C18)2 and of a complex between C60(C18)2 and ZnTPP have a large charge-transfer character. The fluorescence quantum yield of C60(C18)2 decreases in the presence of an electric field, which probably arises from the field-induced acceleration of the intramolecular nonradiative process of C60(C18)2 in the fluorescent state. In a mixture between ZnTPP and C60(C18)2, electrofluorescence spectra show the field-induced enhancement for the fluorescence of ZnTPP and the field-induced de-enhancement for the fluorescence both of C60(C18)2 and of the complex between ZnTPP and C60(C18)2. A theoretical analysis clearly shows that the field-induced enhancement of the ZnTPP fluorescence in a mixture results from the field-induced deceleration of the rate of the electron transfer from the excited ZnTPP to C60(C18)2. The standard free energy gap for the photoinduced electron-transfer process is estimated based on the theoretical simulation of the field-dependent fluorescence intensity.  相似文献   

4.
The synthesis and electrochemical and photophysical studies of a series of alkyne-linked zinc-porphyrin-[60]fullerene dyads are described. These dyads represent a new class of fully conjugated donor-acceptor systems. An alkynyl-fullerene synthon was synthesized by a nucleophilic addition reaction, and was then oxidatively coupled with a series of alkynyl tetra-aryl zinc-porphyrins with 1-3 alkyne units. Cyclic and differential pulse voltammetry studies confirmed that the porphyrin and fullerene are electronically coupled and that the degree of electronic interaction decreases with increasing length of the alkyne bridge. In toluene, energy transfer from the excited zinc-porphyrin singlet to the fullerene moiety occurs, affording fullerene triplet quantum yields of greater than 90 %. These dyads exhibit very rapid photoinduced electron transfer in tetrahydrofuran (THF) and benzonitrile (PhCN), which is consistent with normal Marcus behavior. Slower rates for charge recombination in THF versus PhCN clearly indicate that charge-recombination events are occurring in the Marcus inverted region. Exceptionally small attenuation factors (beta) of 0.06+/-0.005 A(-1) demonstrate that the triple bond is an effective mediator of electronic interaction in zinc-porphyrin-alkyne-fullerene molecular wires.  相似文献   

5.
Two or eight zinc triphenyl porphyrins were conjugated with Zn-phthalocyanine or H2-phthalocyanine to form ZnPc-(ZnTPP)2, ZnPc-(ZnTPP)8, H2Pc-(ZnTPP)2 and H2Pc-(ZnTPP)8. Energy transfers from the porphyrin moiety to phthalocyanine part were quantitatively studied with the modality of fluorescence resonance energy transfer (FRET). By measuring the fluorescence increment from the phthalocyanine moiety and the decrease from porphyrin part under selective excitation at the B band of the porphyrin part in those conjugated compounds and their equimolar mixture of compositions, energy transfer efficiencies were estimated to be 90% for H2Pc-(ZnTPP)8 and ZnPc-(ZnTPP)8, and 60%, 30% for ZnPc-(ZnTPP)2 and H2Pc-(ZnTPP)2, respectively.  相似文献   

6.
The present article reports, for the first time, the photophysical aspects of noncovalent interaction of a fullerene derivative, namely, C(60) pyrrolidine tris-acid ethyl ester (PyC(60)) with a series of zincphthalocyanines, for example, underivatized zincphthalocyanine (1), zinc-1,4,8,11,15,18,22,25-octabutoxy-29H,31H-phthalocyanine (2), and zinc-2,3,9,10,16,17,23,24-octakis-(octyloxy)-29H,31H-phthalocyanine (3) in toluene. Ground state electronic interaction of PyC(60) with 1, 2 and 3 has been evidenced from the observation of well-defined charge transfer (CT) absorption bands in the visible region. Utilizing the CT transition energy, vertical electron affinity (E(A)(v)) of PyC(60) is determined. Steady state fluorescence experiment enables us to determine the value of binding constant (K) in the magnitude of 2.60 × 10(4) dm(3)·mol(-1), 2.20 × 10(4) dm(3)·mol(-1), and 1.27 × 10(4) dm(3)·mol(-1) for the noncovalent complexes of PyC(60) with 1, 2, and 3, respectively. K values of PyC(60)-ZnPc complexes suggest that PyC(60) is incapable of discriminating between 1, 2, and 3 in solution. Lifetime experiment signifies the importance of static quenching phenomenon for our presently investigated supramolecules and it yields larger magnitude of charge separated rate constant for the PyC(60)-1 species in toluene. Photoinduced energy transfer between PyC(60) and ZnPc derivatives, namely, 1, 2, and 3, in toluene, has been evidenced with nanosecond laser photolysis method by observing the transient absorption bands in the visible region; transient absorption studies establish that energy transfer from (T)PyC(60)* to the ZnPc occurs predominantly, as confirmed by the consecutive appearance of the triplet states of PyC(60). Theoretical calculations at semiempirical level (PM3) evoke the single projection geometric structures for the PyC(60)-ZnPc systems in vacuo, which also proves that interaction between PyC(60) and ZnPc is governed by the electrostatic mechanism rather than dispersive forces associated with π-π interaction.  相似文献   

7.
The spectroscopy and dynamic behavior of the self-assembled, Soret-excited zinc tetraphenylporphyrin (ZnTPP) plus fullerene (C(60)) model system in solution has been examined using steady state fluorescence quenching, nanosecond time-correlated single photon counting, picosecond fluorescence upconversion, and picosecond transient absorption methods. Evidence of ground state complexation is presented. Steady-state quenching of the S(2) and S(1) fluorescence of ZnTPP by C(60) reveals that the quenching processes only occur in the excited complexes, are ultrafast, and proceed at different rates in the two states. Only uncomplexed ZnTPP is observed by fluorescence lifetime methods; the locally excited complexes are either dark or, more likely, rapidly relax to products that do not radiate strongly. Both short-range (Dexter) energy transfer and electron transfer relaxation mechanisms are evaluated. Picosecond transient absorption data obtained from the subtle differences between the spectra of Soret-excited ZnTPP with and without a large excess of added C(60) reveal the formation, on a subpicosecond time scale, of relatively long-lived charge-separated species. Soret excitation of ZnTPP···C(60) does not produce a quantitative yield of species in the lower S(1) excited state.  相似文献   

8.
We describe the thermodynamic characterisation of the self‐sorting process experienced by two homodimers assembled by hydrogen‐bonding interactions through their cyclopeptide scaffolds and decorated with Zn–porphyrin and fullerene units into a heterodimeric assembly that contains one electron‐donor (Zn–porphyrin) and one electron‐acceptor group (fullerene). The fluorescence of the Zn–porphyrin unit is strongly quenched upon heterodimer formation. This phenomenon is demonstrated to be the result of an efficient photoinduced electron‐transfer (PET) process occurring between the Zn–porphyrin and the fullerene units of the heterodimeric system. The recombination lifetime of the charge‐separated state of the heterodimer complex is in the order of 180 ns. In solution, both homo‐ and heterodimers are present as a mixture of three regioisomers: two staggered and one eclipsed. At the concentration used for this study, the high stability constant determined for the heterodimer suggests that the eclipsed conformer is the main component in solution. The application of the bound‐state scenario allowed us to calculate that the heterodimer exists mainly as the eclipsed regioisomer (75–90 %). The attractive interaction that exists between the donor and acceptor chromophores in the heterodimeric assembly favours their arrangement in close contact. This is confirmed by the presence of charge‐transfer bands centred at 720 nm in the absorption spectrum of the heterodimer. PET occurs in approximately 75 % of the chromophores after excitation of both Zn–porphyrin and fullerene chromophores. Conversely, analogous systems, reported previously, decorated with extended tetrathiafulvalene and fullerene units showed a PET process in a significantly reduced extent (33 %). We conclude that the strength (stability constant (K)×effective molarity (EM)) of the intramolecular interaction established between the two chromophores in the Zn–porphyrin/fullerene cyclopeptide‐based heterodimers controls the regioisomeric distribution and regulates the high extent to which the PET process takes place in this system.  相似文献   

9.
Abstract— In order to study energy transfer to zinc tetraphenylporphyrin (ZnTPP) in micellar solution, a series of surface active agents of sodium N-alkyl carbazole sulfonate, were synthesized. The energy transfer efficiency from the carbazole group near the surface to ZnTPP located in the core of sodium lauryl sulfate (NaLS) micelles was found to be 30%, as observed through the fluorescence of ZnTPP. The critical micelle concentrations (CMC) of the sodium N-alkyl carbazole sulfonate surfactants, determined by scattering, were 2 times 10-4 M, 3 times 10-5M and 3 times 10-6 M, respectively, for alkyl: octyl, dodecyl and hexadecyl. The sensitivity of the CMC of NaLS to the presence of foreign surfactants and solubilizates was also investigated.  相似文献   

10.
A series of water-soluble porphyrin electrolytes with quaternary ammonium ions side chains (TEMZnPN and THMZnPN) and sulfonated fullerene derivatives were synthesised and characterised. The self-assembled system was fabricated through the electrostatic interaction between the quaternary ammonium ions on the porphyrin derivatives and the sulfonic ions on the fullerene derivatives. The optical properties of the self-assembled system in aqueous solution were recorded by ultraviolet–visible and fluorescence spectroscopy. Scanning electron microscopy indicated that the morphology of the self-assembled films was highly relative to the distance between the quaternary ammonium ions and the porphyrin core, which could be easily adjusted by changing the length of the alkyl chain in the porphyrin derivatives.  相似文献   

11.
Photoinduced vectorial electron transfer in a molecularly organized porphyrin-fullerene (PF) dyad film is enhanced by the interlayer charge transfer from the porphyrin moiety of the dyad to an octanethiol protected (dcore approximately 2 nm) gold nanoparticle (AuNP) film. By using the time-resolved Maxwell displacement charge (TRMDC) method, the charge separation distance was found to increase by 5 times in a multilayer film structure where the gold nanoparticles face the porphyrin moiety of the dyad, that is, AuNP|PF, compared to the case of the PF layer alone. Films were assembled by the Langmuir-Blodgett (LB) method using octadecylamine (ODA) as the matrix compound. Atomic force microscopy (AFM) images of the monolayers revealed that AuNPs are arranged into continuous, islandlike structures and PF dyads form clusters. The porphyrin reference layer was assembled with the AuNP layer to gain insight on the interaction mechanism between porphyrin and gold nanoparticles. Interlayer electron transfer was also observed between the AuNPs and porphyrin reference, but the efficiency is lower than that in the AuNP|PF film. Fluorescence emission of the reference porphyrin is slightly quenched, and fluorescence decay becomes faster in the presence of AuNPs. The proposed mechanism for the electron transfer in the AuNP|PF film is thus the primary electron transfer from the porphyrin to the fullerene followed by a secondary hole transfer from the porphyrin to the AuNPs, resulting in an increased charge separation distance and enhanced photovoltage.  相似文献   

12.
A series of zinc porphyrin–[60]fullerene dyads linked by conformation-constrained tetrasilanes and permethylated tetrasilane have been synthesized for the evaluation of the conformation effect of the tetrasilane linkers on the photoinduced electron transfer. The excited-state dynamics of these dyads have been studied using the time-resolved fluorescence and absorption measurements. The fluorescence of the zinc porphyrin moiety in each dyad was quenched by the electron transfer to the fullerene moiety. The transient absorption measurements revealed that the final state of the excited-state process was a radical ion pair with a radical cation on the zinc porphyrin moiety and a radical anion on the fullerene moiety as a result of the charge separation. The charge separation and charge recombination rates were found to show only slight conformation dependence of the tetrasilane linkers, which is characteristic for the Si-linkages.  相似文献   

13.
Small angle X-ray scattering (SAXS) and electron paramagnetic resonance (EPR) have been used to investigate the interaction of the water-soluble meso-tetrakis (4-sulfonatophenyl) porphyrin (TPPS(4)) with cationic cethyltrimethylammonium chloride (CTAC) micelles. To evaluate if the porphyrin protonation state affects its interaction with the micelle, both SAXS and EPR measurements were performed at pH 4.0 and 9.0. The best-fit SAXS curves were obtained assuming for CTAC micelle a prolate ellipsoidal shape in the absence and upon incorporation of 2-10 mM TPPS(4). SAXS results show that the presence of porphyrin impacts on micellar hydrophobic core, leading to a micellar reassembling into smaller micelles. Lineshapes of EPR spectra of 5- and 16-doxyl stearic acids (5- and 16-DSA, respectively) bound to 100 mM CTAC micelles exhibited slight changes as a function of porphyrin concentration. Spectral simulations revealed an increase of mobility restriction for both spin probes, especially at higher porphyrin concentration, where a small reduction of environment polarity was also observed for 16-DSA. The spin labels monitored only slight differences between pH 4.0 and 9.0, in agreement with the SAXS results.  相似文献   

14.
Three porphyrin-fullerene dyads, in which a diyne bridge links C(60) with a beta-position on a tetraarylporphyrin, have been synthesized. The free-base dyad was prepared, as well as the corresponding Zn(II) and Ni(II) materials. These represent the first examples of a new class of conjugatively linked electron donor-acceptor systems in which pi-conjugation extends from the porphyrin ring system directly to the fullerene surface. The processes that occur following photoexcitation of these dyads were examined using fluorescence and transient absorption techniques on the femtosecond, picosecond, and nanosecond time scales. In sharp contrast to the photodynamics associated with singlet excited-state decay of reference tetraphenylporphyrins (ZnTPP, NiTPP, and H(2)TPP), the diyne-linked dyads undergo ultrafast (<10 ps) singlet excited-state deactivation in toluene, tetrahydrofuran (THF), and benzonitrile (PhCN). Transient absorption techniques with the ZnP-C(60) dyad clearly show that in toluene intramolecular energy transfer (EnT) to ultimately generate C(60) triplet excited states is the dominant singlet decay mechanism, while intramolecular electron transfer (ET) dominates in THF and PhCN to give the ZnP(*+)/C(60)(*-) charge-separated radical ion pair (CSRP). Electrochemical studies indicate that there is no significant charge transfer in the ground states of these systems. The lifetime of ZnP(*+)/C(60)(*-) in PhCN was approximately 40 ps, determined by two different types of transient absorption measurement in two different laboratories. Thus, in this system, the ratio of the rates for charge separation (k(CS)) to rates for charge recombination (k(CR)), k(CS)/k(CR), is quite small, approximately 7. The fact that charge separation (CS) rates increase with increasing solvent polarity is consistent with this process occurring in the normal region of the Marcus curve, while the slower charge recombination (CR) rates in less polar solvents indicate that the CR process occurs in the Marcus inverted region. While photoinduced ET occurs on a similar time scale in a related dyad 15 in which a diethynyl bridge connects C(60) to the para position of a meso phenyl moiety of a tetrarylporphyrin, CR occurs much more slowly; i.e., k(CS)/k(CR) approximately equal to 7400. Thus, the position at which the conjugative linker is attached to the porphyrin moiety has a dramatic influence on k(CR) but not on k(CS). On the basis of electron density calculations, we tentatively conclude that unfavorable orbital symmetries inhibit charge recombination in 15 vis a vis the beta-linked dyads.  相似文献   

15.
Photoinduced electron transfer in intramolecularly interacting free-base porphyrin bearing one or four 18-crown-6 ether units at different positions of the porphyrin macrocycle periphery and pristine fullerene was investigated in polar benzonitrile and nonpolar o-dichlorobenzene and toluene solvents. Owing to the presence of two modes of binding, stable dyads were obtained in which the binding constants, K, were found to range between 4.2 x 10(3) and 10.4 x 10(3) M(-1) from fluorescence quenching data depending upon the location and number of crown ether entities on the porphyrin macrocycle and the solvent. Computational studies using the B3LYP/3-21G() method were employed to arrive at the geometry and electronic structure of the intramolecular dyads. The energetics of the redox states of the dyads were established from cyclic voltammetric studies. Under the intramolecular conditions, both the steady-state and time-resolved emission studies revealed efficient quenching of the singlet excited free-base porphyrin in these dyads, and the measured rates of charge separation, k(CS), were found to be in the 10(8)-10(9) s(-1) range. Nanosecond transient absorption studies were performed to characterize the electron-transfer products and to evaluate the charge-recombination rates. Shifting of the electron-transfer pathway from the intra- to intermolecular route was achieved by complexing potassium ions to the crown ether cavity(ies) in benzonitrile. This cation complexation weakened the intramolecular interactions between fullerene and the crown ether appended free-base porphyrin supramolecules, and under these conditions, intermolecular type interactions were mainly observed. Reversible inter- to intramolecular electron transfer was also accomplished by extracting the potassium ions of the complex with the addition of 18-crown-6. The present study nicely demonstrates the application of supramolecular methodology to control the excited-state electron-transfer path in donor-acceptor dyads.  相似文献   

16.
Donor-acceptor dyads were constructed using zinc N-confused porphyrin (ZnNCP), a structural isomer of zinc tetraphenylporphyrin, as a donor, and fullerene as an electron acceptor. Two derivatives, pyridine-coordinated zinc N-confused porphyrin (Py:ZnNCP) and the zinc N-confused porphyrin dimer (ZnNCP-dimer) were utilized to form the dyads with an imidazole-appended fulleropyrrolidine (C60Im). These porphyrin isomers formed well-defined 1:1 supramolecular dyads (C60Im:ZnNCP) via axial coordination. The dyads were characterized by optical absorption and emission, ESI-mass, 1H NMR, and electrochemical methods. The binding constant, K, was found to be 2.8 x 10(4) M(-1) for C60Im:ZnNCP. The geometric and electronic structure of C60Im:ZnNCP were probed by using DFT B3LYP/3-21G methods. The HOMO was found to be on the ZnNCP entity, while the LUMO was primarily on the fullerene entity. The electrochemical properties of C60Im:ZnNCP was probed using cyclic voltammetry in o-dichlorobenzene, 0.1 n-Bu4NClO4. The Py:ZnNCP was found to be easier to oxidize by over 340 mV compared to Py:ZnTPP. Upon dyad formation via axial coordination, the first oxidation revealed an anodic shift of nearly 90 mV. Evidence of photoinduced charge separation from the singlet excited ZnNCP to the appended fullerene was established from time-resolved emission and nanosecond transient absorption studies.  相似文献   

17.
Three new tripyridyl tripodal ligands appended with either fullerene or pyromellitdiimide moieties, named C(60)-s-Tripod, C(60)-l-Tripod, and PI-Tripod, were synthesized and introduced into a porphyrin macroring N-(1-Zn)(3) (where 1-Zn = trisporphyrinatozinc(II)). From UV-vis absorption and fluorescence titration data, the binding constants of C(60)-s-Tripod, C(60)-l-Tripod, and PI-Tripod with N-(1-Zn)(3) in benzonitrile were estimated to be 3 × 10(8), 1 × 10(7), and 2 × 10(7) M(-1), respectively. These large binding constants denote multiple interactions of the ligands to N-(1-Zn)(3). The binding constants of the longer ligand (C(60)-l-Tripod) and the pyromellitdiimide ligand (PI-Tripod) are almost the same as those without the fullerene or pyromellitdiimide groups, indicating that they interact via three pyridyl groups to the porphyrinatozinc(II) coordination. In contrast, the larger binding constants and the almost complete fluorescence quenching in the case of the shorter ligand (C(60)-s-Tripod) indicate that the interaction with N-(1-Zn)(3) is via two pyridyl groups to the porphyrinatozinc(II) coordination and a π-π interaction of the fullerene to the porphyrin(s). The fluorescence of N-(1-Zn)(3) was quenched by up to 80% by the interaction of C(60)-l-Tripod. The nanosecond transient absorption spectra showed only the excited triplet peak of the fullerene on selective excitation of the macrocyclic porphyrins, indicating that energy transfer from the excited N-(1-Zn)(3) group to the fullerenyl moiety occurs in the C(60)-l-Tripod/N-(1-Zn)(3) composite. In the case of PI-Tripod, the fluorescence of N-(1-Zn)(3) was quenched by 45%. It seems that the fluorescence quenching probably originates from electron transfer from the excited N-(1-Zn)(3) group to the pyromellitdiimide moiety.  相似文献   

18.
The study of fluorescence energy transfer from the phenyl groups of the micellar triton X-100 (TX-100) to solubilised 1-pyrene butyric acid (PBA) has been carried out. Through the analysis of the donor fluorescence quenching energy transfer efficiency has been determined. The observed donor-acceptor separation suggests that pyrene molecules are distributed uniformly in the micellar core.  相似文献   

19.
As part of a continuing investigation of the topological control of intramolecular electron transfer (ET) in donor-acceptor systems, a symmetrical parachute-shaped octaethylporphyrin-fullerene dyad has been synthesized. A symmetrical strap, attached to ortho positions of phenyl groups at opposing meso positions of the porphyrin, was linked to [60]-fullerene in the final step of the synthesis. The dyad structures were confirmed by (1)H, (13)C, and (3)He NMR, and MALDI-TOF mass spectra. The free-base and Zn-containing dyads were subjected to extensive spectroscopic, electrochemical and photophysical studies. UV-vis spectra of the dyads are superimposable on the sum of the spectra of appropriate model systems, indicating that there is no significant ground-state electronic interaction between the component chromophores. Molecular modeling studies reveal that the lowest energy conformation of the dyad is not the C(2)(v)() symmetrical structure, but rather one in which the porphyrin moves over to the side of the fullerene sphere, bringing the two pi-systems into close proximity, which enhances van der Waals attractive forces. To account for the NMR data, it is proposed that the dyad is conformationally mobile at room temperature, with the porphyrin swinging back and forth from one side of the fullerene to the other. The extensive fluorescence quenching in both the free base and Zn dyads is associated with an extremely rapid photoinduced electron-transfer process, k(ET) approximately 10(11) s(-)(1), generating porphyrin radical cations and C(60) radical anions, detected by transient absorption spectroscopy. Back electron transfer (BET) is slower than charge separation by up to 2 orders of magnitude in these systems. The BET rate is slower in nonpolar than in polar solvents, indicating that BET occurs in the Marcus inverted region, where the rate decreases as the thermodynamic driving force for BET increases. Transient absorption and singlet molecular oxygen sensitization data show that fullerene triplets are formed only with the free base dyad in toluene, where triplet formation from the charge-separated state is competitive with decay to the ground state. The photophysical properties of the P-C(60) dyads with parachute topology are very similar to those of structurally related rigid pi-stacked P-C(60) dyads, with the exception that there is no detectable charge-transfer absorption in the parachute systems, attributed to their conformational flexibility. It is concluded that charge separation in these hybrid systems occurs through space in unsymmetrical conformations, where the center-to-center distance between the component pi-systems is minimized. Analysis of the BET data using Marcus theory gives reorganization energies for these systems between 0.6 and 0.8 eV and electronic coupling matrix elements between 4.8 and 5.6 cm(-)(1).  相似文献   

20.
Two multi‐walled carbon nanotube (MWCNT)‐based nanohybrids, MWCNT–ZnTPP and MWCNT–TPP (TPP=5‐[4‐{2‐(4‐formylphenoxy)‐ ethyloxy}phenyl]‐10,15,20‐triphenylporphyrin, ZnTPP=5‐[4‐{(4‐formylphenyl)ethynyl}phenyl]‐10,15,20‐triphenylporphinatozinc(II)), were prepared directly from pristine MWCNTs through 1,3‐dipolar cycloaddition reactions. Covalent attachment of the porphyrins to the surfaces of the MWCNTs was confirmed by Fourier transform infrared spectroscopy, ultraviolet/visible absorption, fluorescence, Raman, and X‐ray photoelectron spectroscopy, elemental analysis, transmission electron microscopy, and thermogravimetric analysis. Attachment of the porphyrin moieties to the surface of the MWCNTs significantly improves the solubility and ease of processing of these MWCNT–porphyrin composite materials. Z‐scan studies reveal that these MWCNT–porphyrin nanohybrids exhibit enhanced nonlinear optical properties under both nanosecond and picosecond laser pulses at λ=532 nm in comparison with free MWCNTs and the free porphyrin chromophores, whereas superior optical limiting performance was displayed by MWCNT–porphyrin composite materials rather than MWCNTs/ZnTPP and MWCNTs/TPP blends, which is consistent with a remarkable accumulation effect as a result of the covalent linkage between the porphyrin and the MWCNTs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号