首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
A reliable method using 125I tracer for direct determination of volatile iodine formed in aqueous environmental samples was established. Soil solution, seawater and bacterial cell suspension were selected as model samples, and incubated with 125I. Volatile inorganic and organic iodine species produced during incubation were collected in silver wool and activated charcoal traps, separately the efficiency of the traps, the storage conditions of 125I stock solution and the procedures to expel the dissolved volatile iodine from the sample solutions were examined. Formation of biological volatile iodine was observed in all samples, and the dominant iodine species was found to be organic iodine. The advantages of this method are its simplicity, low cost and low detection limit.  相似文献   

2.
A reliable method for the sampling and analysis of atmospheric iodine species was developed. The air filtering system consisted of a 0.4 m Nuclepore® filter, 47 mm in diameter, for particulate collection followed by two, 47 mm in diameter, cellulose filters for inorganic iodine collection. The latter filters had been impregnated with 1N LiOH in a 10% glycerol-water mixture. The organic iodine was collected by two beds holding 0.2 g of fibriform activated charcoal produced from phenol resin. Supplementation of the charcoal with triethylendiamine (TEDA) enhanced the sorption ability for gaseous iodine. The filters were analyzed by neutron activation analysis. The background radioactivity could be reduced by using the fibriform activated charcoal due to the low content of impurities in the phenol resin. The background count for128I (443 keV) obtained from the fibriform activated charcoal was about one order of magnitude lower than that of the conventional granular one (plant origin). Approximate detection limits for particulate, inorganic and organic iodine were 1, 0.5 and 0.5 ng/m3, respectively, when 50 m3 of air was sampled by this system. The air was sampled at two locations along the coast of Ibaraki, Japan. The concentration ranges of particulate, inorganic and organic iodine were 0.3–3.4, 1.2–3.3 and 7.8–20.4 ng/m3, respectively. Almost 90% of the atmospheric iodine was in a gaseous form in which organic iodine was dominant.  相似文献   

3.
A method of determination of iodine (total and PBI) in serum, urine and other biological materials has been developed. The method consists in a gamma-spectrometric measurement of128I activity after its radiochemical separation. The radiochemical separation procedure includes wet decomposition of the samples in a nitric acid medium followed by a few separation steps, the essential step being the substoichiometric extraction of iodide with a chloroform solution of tetraphenylarsonium chloride. Owing to the application of the substoichiometric separation, a high radiochemical purity of the separated iodine is achieved and the determination of the yield of radiochemical separation is not necessary.  相似文献   

4.
Summary The method chosen for determination of iodine in this investigation is an extension of an existing analytical technique to food samples which was developed for environmental samples. The method is based on pre-irradiation combustion of the sample to liberate iodine, trapping the iodine on charcoal, and quantitating the element by neutron activation analysis (NAA). Existing botanical and dietary reference materials were used to check the validity of the method. Several mixed diet samples with high fat content from the U.S. Total Diet Study and composites of cereals with both low and high iodine content were analyzed. This method of pre-irradiation combustion followed by NAA has been shown to be a viable technique for the determination of iodine in dietary samples. However, with a detection limit of about 50 ng of iodine, large amounts of sample (>1 g) are typically required for each determination.  相似文献   

5.
A procedure for determining Pu in environmental soil using238Pu as a yield tracer is described. The method involves radiochemical separation and electrodeposition onto a stainless steel disc followed by alpha-spectrometric measurement with a solid-state detector. In order to eliminate error in calculation caused by238Pu contained in original samples, a new calculating method is introduced in this paper. By using this method, the activity of238Pu contained in original samples can be substracted from the total activity of samples, to which the238Pu tracer is added. This procedure has been applied satisfactorily to the determination of Pu in a soil reference sample, which was supplied by the Institute of Metrological Science of China.  相似文献   

6.
A procedure for semi-automatic isolation and determination of radioactive strontium from natural samples was developed. The method was tested by the determination of90Sr in soil samples and the results obtained were compared to those obtained by the standard procedure. The procedure consists of leaching of strontium (and other cations as well) from soil samples with a water suspension of the cation exchanger Amberlite IR-20, the separation of strontium from other cations, e.g., potassium, calcium, sodium, barium by the anion exchangers Amberlite CG-400 or Dowex Ag 1×8 with 0.25M HNO3 in ethanol-methanol mixture as eluent in the apparatus specially constructed for this purpose. Determination of90Sr was done on the low-level gas-flow β-counter and by Cherenkow counting on the liquid-scintillation counter few hours after the separation. It was shown that this procedure might be successfully applied for rapid determination of90Sr in soil samples and other natural samples in a timesaving manner.  相似文献   

7.
A solvent extraction techniques has been developed to separate iodine from mercury contained in thyroid tissues for the determinations of129I and127I in human thyroid blocks by neutron activation analysis. The tissue samples are digested with a mixture of 5 ml HCl and 1 ml HNO3 in a round-bottomed flask fitted with a condenser running with cold water to avoid any loss of iodine. Iodine is extracted into 0.1 M dihexyl sulfide solution in xylene leaving the majority of the mercury in the aqueous phase. Iodine is adsorbed on activated charcoal packed in quartz tubes either by heating the xylene containing iodine in the presence of oxygen or by heating the aqueous solution obtained after back extracting iodine from xylene using a saturated sulfur dioxide solution. Iodine is desorbed from the charcoal and trapped into a quartz ampule which is sent for neutron activation.  相似文献   

8.
An analytical method for the determination of127I and129I in various environemntal samples has been developed. The method consists of the separation of iodine from the samples using a double layered quartz tube firing apparatus, post-irradiation purification of iodine, and measuring126I and130I by means of gamma spectrometry. The relative standard deviations of this method was less than 6%.  相似文献   

9.
An improved solvent extraction procedure for iodine separation from brine samples has been applied at Xi’an Accelerator Mass Spectrometry (AMS) center. Oil in the brine sample has to be removed to avoid appearance of the third phase during solvent extraction and to improve the chemical yield of iodine. The small amount of oil remained in the water phase was first removed by phase separation through settling down sufficiently based on their immiscibility, and then by filtration through a cellulose filter, on which oil was absorbed and removed. After oil removed, extraction recovery of iodine could achieve more than 90 %. The sodium bisulfite as an effective reductant should be added before acidification to avoid loss of iodine by formation of I2 in sample via reaction of iodate and iodide at pH 1–2, and then pH was adjusted to 1–2 to reduce the iodate to iodide followed by oxidation of iodide to I2 and solvent extraction to separate all inorganic iodine. As a pre-nuclear era sample, 129I/127I ratio in brine is normally more than two orders of magnitude lower than that in present surface environmental samples, so prevention of cross-contamination and memory effect in apparatus during processing procedure are very critical for obtaining reliable results, and monitoring the procedure blank is very important for analytical quality of 129I. The 129I/127I isotopic ratio in the brine samples and procedure blank of iodine reagents were measured to be (1.9–2.7) × 10?13 and 2.08 × 10?13, respectively, 3–4 orders of magnitudes lower than that in environmental samples in Xi’an, and the result of procedure blank is in the same level as the previous experiments in past 3 years, indicating contamination is not observed in our method.  相似文献   

10.
Determination of 90Sr in environmental solid samples is a challenging task because of the presence of so many other radionuclides in samples of interest. This problem was dealt with by radiochemical separation of strontium followed by yttrium separation and Cerenkov counting of the high-energy ??-particle emissions of 90Y in order to quantitate 90Sr. In this work, an improved method is described for the determination of 90Sr in soil samples, through the separation of the daughter 90Y at equilibrium. The procedure is based on the HDEHP solvent extraction in combination with liquid scintillation spectrometry (LSS). A low background Quantulus has been optimized for low level counting of Cerenkov radiation emitted by the hard ??-emitter 90Y. The analytical quality of the method has been checked by analyzing IAEA Soil-375 reference materials. The analytical method has also been successfully applied to the determination of 90Sr for moss-soil samples in inter-laboratory exercises through IAEA??s ALMERA network. The chemical recovery for 90Y extraction ranged from 80 to 85% and the counting efficiency was 73% in the window 25?C400 keV.  相似文献   

11.
A method for the determination of uranium based on235U thermal neutron fission, has been developed and employed on samples of ashed fish tissue and seaweed. The method involves a post-irradiation ion exchange separation of iodine isotopes. The 884 keV photopeak of134I is used for measurement. Uranium detection limits in the samples concerned have been estimated to be 1·10−8g in terms of natural uranium. The precision achieved in analysing several series of 3–5 samples was 4–10 per cent. The accuracy of the method was tested by employing an independent neutron activation procedure based on239U measurement. The accuracy of both methods was checked by analysing NBS SRM 1571 ‘Orchard Leaves’.  相似文献   

12.
A rapid and specific method for the determination of131I in environmental water samples in the presence of some of the most important fission products is described. Radioiodine is separated from acidified water using tri-n-octylamine solution in toluene with dissolved iodine by one-stage static procedure with about 90% separation efficiency and 200-fold volume concentration. After the decolorization of the organic phase with NaOH in methanol, radioactivity of131I is counted by a toluene base liquid scintillator with a counting efficiency of 70%. The method is simple and enables to determine low radioactivity131I with a detection limit less than 5 pCi/1 in about 1.5 hrs.  相似文献   

13.
A chemical and mass-spectrometric procedure for uranium isotopic analysis using a thermal ionisation mass spectrometer equipped with a Wide Aperture Retardation Potential energy filter has been developed and applied to uranium isotopic measurements for various soil samples. Soil samples were digested using a microwave digestor. Uranium was isolated from soil samples by the chemical separation procedure based on the use of anion-exchange resin and UTEVA extraction chromatography column. The isotope ratios were measured for two certified reference materials by using a VG Sector 54-30 thermal ionisation mass spectrometer in dynamic mode with Faraday cup and Daly ion counting system. Replicates of standard reference materials showed excellent analytical agreement with established values supporting the reliability and accuracy of the method. Precision of the 235U/238U ratio was achieved by a correction factor of 0.22% amu as a function of ion-beam intensity with sample loads of around 250?ng of U. The resulting reproducibility for standards and soil samples was better than 0.2% at two standard deviations (SD). Uranium isotopic compositions have been determined in several reference soil samples such as Buffalo river sediment, NIST 2704, river sediment SRM 4350b and ocean sediment NIST-4357 and a Chernobyl soil sample. There was a significant deviation from the natural uranium in comparison with Chernobyl soil samples.  相似文献   

14.
The concentrations of iodine in fresh waters are known to be within the range of 0.5 to 35 ng·ml−1, much lower than in oceanic waters. The iodine concentrations, particularly that of129I which is significant from the radiation safety aspect, in public drinking waters have to be specified in order to verify the required level before distribution for domestic use. A modified version of an established method was used in the adsorption of iodine, iodate, total inorganic iodine and charcoal-adsorbable iodine using activated carbon prepared from oil palm kernel wastes. A thorough investigation of the physical properties of the activated carbon was carried out to determine its viability as an adsorbent for volatile species such as iodine. The iodine species were preconcentrated from water samples collected from wells in villages and from water intake points along rivers. The quantitative analysis of the species adsorbed was done by irradiating the activated charcoal loaded with the respective species in a neutron flux of 5.1·1012 n·cm−2·s−1 from a TRIGA MkII, nuclear reactor. Recovery experiments using spiked samples was done to provide quality assurance controls.  相似文献   

15.
A procedure has been developed which allows for the isolation, collection and analysis of atmospheric gaseous iodine and bromine. Particulate matter is removed from the airstream to be sampled by electrostatic precipitation. The gaseous halogen species are adsorbed onto specially cleaned activated charcoal. After irradiation of the charcoal sample with thermal neutrons, the iodine and bromine are removed from the charcoal, isolated, and purified as the AgX precipitate. The amounts of gaseous iodine and bromine are then determined by β-counting. The system works well for air sheds with low particulate iodine and bromine concentrations relative to that in the gaseous phase. In air sheds where the particulate halogen predominates, the gas phase measurements are more uncertain.  相似文献   

16.
Iodine is an element with excellent intrinsic sensitivity when determined by thermal neutron activation. However, in most real samples, the preponderance of chlorine and bromine, relative to iodine, makes the direct determination of iodine virtually impossible. Over the past 20 years, there probably have been as many publications on the separation of iodine as there have been for any other radionuclide. Upon review, however, the methods are essentially the same. After irradiation, the samples are subjected to a rapid destructive process to free the iodine from the matrix and then the iodine is separated from the other halides either by liquid-liquid extraction or by liquid ion exchange. Both of these procedures are, however, rather complex and do not effect a complete separation of the halides in one pass. In the work presented here, a simple procedure is described for the quantitative separation of iodine from chlorine. The procedure utilizes a gas phase separation on hydrated manganese dioxide with iodine collected on silvered quartz wool. The described procedure has been used for the determination of iodine in numerous new and old SRM's at the NBS.  相似文献   

17.
A sequential radiochemical procedure for isotopic analysis of uranium and thorium in soil has been developed. Analysis involves total dissolution of the samples to allow equilibration of the natural isotopes with added tracers, followed by radiochemical separation using anion exchange chromatography (BioRad AG 1–X8). Further separation and purification is performed employing solvent extraction techniques. Finally, the U and Th fractions are co-precipitated with lanthanum and cerium fluoride, respectively, and quantified by alpha-particle spectrometry. Overall chemical yields range from 60 to 90%. Under normal operating conditions and present counting set up, the minimum detectable concentration (MDC) is approximately 2 Bq/kg for soil samples. This is based on one gram aliquot of sample, 80% chemical yield, and 1000 minute counting with a detector having about 15% counting efficiency. The procedure has been successfully tested with Standard Reference Materials. Various soil samples were analyzed with high chemical yields and fine quality of alpha-spectra. Decontamination factor studies were performed to determine the extent of the carry over of210Po,225Ac,226Ra, and229Th into U fraction and210Po,225Ac,226Ra, and232U into Th fraction.  相似文献   

18.
A mass spectrometric method for the determination of chlorine, bromine and iodine species of humic substances (HS) has been developed by coupling a HPLC system with ICP-MS. Using size exclusion chromatography, the method was applied to the characterization of natural water samples (ground water, seepage water from soil, brown water) and a sewage water sample. Quantification of iodine/HS species was carried out by the on-line isotope dilution technique, which was not possible for bromine and chlorine species because of mass spectroscopic interferences by using a quadrupole ICP-MS. Characteristic fingerprints of the halogen/HS species, correlated with the corresponding UV chromatogram, were obtained dependent on the different origin of HS. Biological influences were indicated when following changes of the iodine/HS species composition by aging. The formation of iodine/HS species from inorganic iodide was investigated by labelling experiments with an 129I spike solution, resulting in the finding that specific HS fractions are preferably iodinated.  相似文献   

19.
A simple and rapid separation method for 129I determination in radioactive waste samples was developed. Suitable conditions for iodine volatilization were tested. Iodine was trapped in 1.5 mol L?1 NaOH and precipitated as PdI2·H2O by addition of PdCl2 with recoveries higher than 80%. The method was applied for analysis of contaminated soil, radioactive sludge, evaporator concentrate and heterogeneous waste samples from nuclear power plants in Slovak Republic. 129I was measured on liquid scintillation counter TRI CARB 2900 TR using Ultima Gold AB scintillation cocktail.  相似文献   

20.
A comparative determination of bromine and iodine in three distinct air sampling media by instrumental thermal and epithermal neturon activation analysis is presented. Open ocean air samples from the mid-Atlantic region were collected on ultra-pure nylon, Nuclepore, and activated charcoal substrates. The bromine and iodine content of each substrate was determined by both epithermal and thermal activation techniques. Good agreement was found within most thermal-epithermal pairs. Relative to the thermal activation procedure, the epithermal technique yields peak/background ratio improvements ranging from a factor of 1.30 to 9.5. Nylon substrates showed the smallest improvement at 1.30 and both Nuclepore and activated charcoal substrates showed improvement factors of 6.7 and 9.5 for bromine and iodine respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号