首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The reaction of tetraphenylphosphonium chloride with an equimolar amount of potassium tetrachloroplatinate or hexachloroplatinic acid in dimethyl sulfoxide gave the complexes [Ph4P]+[PtCl3(DMSO)]? (I) and [Ph4P]+[PtCl5(DMSO)]? (II), respectively. The phosphorus atoms in the cations have tetrahedral environment, the CPC angles and P-C distances 105.63(13)°–112.13(14)°, 1.795(3)–1.797(3) Å I) and 105.7(3)°–112.9(3)°, 1.783(7)–1.791(6) Å II). The platinum coordination polyhedra in the anions [PtCl3(DMSO)]? and [PtCl5(DMSO)]? are distorted square (Pt-S, 2.1937(8); Pt-Cl, 2.2894(10)–2.3024(10) Å; trans-angles: SPtCl, 177.38(4)°; ClPtCl, 175.40(4)°) and octahedron (Pt-S 2.291(2) Å; Pt-Cl, 2.312(2)–2.334(2) Å, trans-angles: SPtCl, 178.28(9)°; ClPtCl, 178.80(9)° and 178.88(8)°).  相似文献   

2.
The [Cr(NCS)(edtrp)], [Cr(NCS)(R-pdtrp)] and [Cr(NCS)(S-pdtra)] complexes, that are derivatives of the trans-equatorial isomers of [Cr(edtrp)(H2O)]° and [Cr(R-pdtrp)(H2O)]° and the cis-equatorial isomer of [Cr(S-pdtra)-(H2O)]° (edtrp = ethylenediamine-N,N,N′-tripropionate, R-pdtrp = R-propane-1,2-diamine-N,N,N′-tripropionate, S-pdtra = S-propane-1,2-diamine-N,N,N′-triacetate) undergo aquation in alkaline media with a strong dependence of the rate on [OH] for the trans-equatorial isomers and a very weak dependence for the cis-equatorial isomer. The thiocyanate ligand release follows a stereoretentive course for all reactants. Based on kinetic data the reaction mechanism has been discussed. Rate differences between the isomers are interpreted in terms of an interchange via a conjugate base (I c.b.) mechanism, assuming an equilibrium between the cis-equatorial-CrIII-S-pdtra complexes with penta- and tetradentate coordination of the edta-like ligand. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
[Ph3PhCH2P]+[PdCl3(DMSO)]? · DMSO (I), [Ph4P]+[PdCl3(DMSO)]? (II), and [Ph4Sb(DMSO)]+[PdCl3(DMSO)]? (III) complexes have been synthesized via the reaction of palladium chloride with equimolar amounts of triphenylbenzylphosphonium chloride, tetraphenylphosphonium chloride, and tetraphenylstibonium chloride, respectively. According to X-ray diffraction data, the cations of complexes I (CPC = 104.90(8)°–111.61(9)°) and II (CPC = 105.12(10)°–111.46(10)°) have slightly distorted tetrahedral structures with P-C bond lengths of 1.786(2)–1.809(2) and 1.791(2)–1.799(2) Å, respectively. The antimony atom in the [Ph4Sb(DMSO)]+ cation has a trigonal bipyramidal surrounding with the dimethyl sulfoxide (DMSO) oxygen atom in an axial position (Sb...O 2.567(2) Å). The palladium atoms in the square mononuclear anions of complexes I, II, and III are tetracoordinate, and Pd-Cl distances are 2.3101(5)–2.3104(5) Å, 2.2950(7)–2.2038(7) Å, and 2.2986(9)–2.3073(9) Å, respectively. The DMSO ligands are coordinated to the palladium atom through the sulfur atom (Pd-S, 2.2318(5) (I), 2.2383(6) (II), and 2.2410(9) Å (III)).  相似文献   

4.
A first example of an aryltellurium(II) compound with three different bonding modes to iodine featuring covalent and non-covalent bonds such as two orthogonal, ambiphilic σ-hole interactions is introduced: [MesTe(I)(I2)(I3)]. It is a member of a series of mesityltellurenyl anions, which are formed during reactions of (MesTe)2 with ZnI2, phenanthroline (phen) and iodine. [Zn(phen)3][MesTe(I)2] ( 1 ), [Zn(phen)3][{MesTe(I)-(I)…Te(I)Mes}{MesTeI2}] ( 2 ) and [Zn(phen)3][MesTe(I)(I2)(I3)][MesTeI2] ( 3 ) are isolated depending on the amount of iodine used. The products contain tellurium atoms bonded to a variety of iodine species (I, μ2-I, I2 and I3) and are, thus, perfectly suitable to explore the amphiphilic behavior of tellurium(II) and its relevance for the formation of non-covalent bonds, where tellurium acts as both donor and acceptor simultaneously. The character of chalcogen and halogen bonds are evaluated by the combination of crystallographic data and computational methods.  相似文献   

5.
The binary group 15 polyazides As(N(3))(3), Sb(N(3))(3), and Bi(N(3))(3) were stabilized by either anion or donor-acceptor adduct formation. Crystal structures are reported for [Bi(N(3))(4)](-), [Bi(N(3))(5)](2-), [bipy·Bi(N(3))(5)](2-), [Bi(N(3))(6)](3-), bipy·As(N(3))(3), bipy·Sb(N(3))(3), and [(bipy)(2)·Bi(N(3))(3)](2). The lone valence electron pair on the central atom of these pnictogen(+III) compounds can be either sterically active or inactive. The [Bi(N(3))(5)](2-) anion possesses a sterically active lone pair and a monomeric pseudo-octahedral structure with a coordination number of 6, whereas its 2,2'-bipyridine adduct exhibits a pseudo-monocapped trigonal prismatic structure with CN 7 and a sterically inactive lone pair. Because of the high oxidizing power of Bi(+V), reactions aimed at Bi(N(3))(5) and [Bi(N(3))(6)](-) resulted in the reduction to bismuth(+III) compounds by [N(3)](-). The powder X-ray diffraction pattern of Bi(N(3))(3) was recorded at 298 K and is distinct from that calculated for Sb(N(3))(3) from its single-crystal data at 223 K. The [(bipy)(2)·Bi(N(3))(3)](2) adduct is dimeric and derived from two BiN(8) square antiprisms sharing an edge consisting of two μ(1,1)-bridging N(3) ligands and with bismuth having CN 8 and a sterically inactive lone pair. The novel bipy·As(N(3))(3) and bipy·Sb(N(3))(3) adducts are monomeric and isostructural and contain a sterically active lone pair on their central atom and a CN of 6. A systematic quantum chemical analysis of the structures of these polyazides suggests that the M06-2X density functional is well suited for the prediction of the steric activity of lone pairs in main-group chemistry. Furthermore, it was found that the solid-state structures can strongly differ from those of the free gas-phase species or those in solutions and that lone pairs that are sterically inactive in a chemical surrounding can become activated in the free isolated species.  相似文献   

6.
7.
Mer-[Cr(pic)3]0 and [Cr(ox)2(pic)]2− undergo successive base hydrolysis to give chromates(III). Dissociation of the first ligand, pic from [Cr(pic)3]0 and ox from [Cr(ox)2(pic)]2−, proceeds in two stages, namely initial chelate-ring opening followed by slower liberation of the monodentate ligand. Kinetics of both the stages were studied spectrophotometrically in 0.2–0.9 M NaOH solution, under pseudo-first-order conditions. The calculated values of k obs were independent of [OH]. A mechanism is proposed, where the formation of intermediates in the hydroxo form prevents the monodentate ligand from undergoing chelate-ring closure. Evidence for the formation of an intermediate with O-bonded picolinate is given. The effects of pH and the complex composition on the reactivity are discussed.  相似文献   

8.
Two nitrosyl Re(II) complexes formulated as [Ni(bipy)3][Re(NO)Br4(pyz)]2 and [Cu(bipy)2Br][ReNOBr4(pyz)] (pyz = pyrazine, bipy = 2,2′-bipyridine) were synthesized and characterized by single-crystal X-ray diffraction. The pyrazine in [Re(NO)Br4(pyz)]? was not able to act as bridge toward a second metal ion, and the two salts were obtained. Computational studies at the density functional level of theory show that the charge on the nitrogen, which could be available for bridging, is dramatically reduced to less than half, decreasing its capability to bind a second metal ion.  相似文献   

9.
The reaction of tert.-butyl carbodiimide with one equivalent of LiNHtBu in tetrahydrofuran at-78 °C produces {Li[C(NtBu)2(HNtBu)]}2-(THF) (1), which is an eight-membered Li2C2N4 ring; the deprotonation of (1) with two equivalents of n-BuLi in tetrahydrofuran at -78 °C and recrystallisation of the product from n-pentane yielded the unsolvated dimer {Li2[C(NtBu)3]}2 (2), which adopts the structure of a distorted hexagonal prism.  相似文献   

10.
The homo-bimetallic complexes of stoichiometry Fe2(L)ClO4(ClO4)2 where L are novel unsymmetrical [N10] (L1.2HClO4) and [N12] (L2.2HClO4) macrocyclic ligands, have been prepared. The ligands were obtained from an in situ capping reaction of the reactive substrate, N,N'-bis(N-ethylaniline)hydrazine-1,2-diimine with a mixture of aniline or 1,3-diaminopropane and HCHO in presence of HClO4. The compounds have been characterized by elemental analyses, conductometric, IR, FAB-mass and electronic spectral studies. IR data of complexes suggest coordination from unsymmetrical aza sites as a tridentate (N,N,N) or tetradentate (N,N,N,N) ligand. mu(eff) values of the complexes suggest presence of antiferromagnetically coupled (Fe3+-Fe3+=S5/2-S5/2) spin exchange. M?ssbauer parameters of the complexes support (+/-3/2)-->(+/-1/2) nuclear transition in high-spin configurations of Fe(III) nuclei of the homo-bimetallic complexes with the presence of Kramer's double degeneracy.  相似文献   

11.
The reduction of [RuIII(edta)(pyz)] (edta=ethylenediaminetetraacetate, pyz=pyrazine) with sulfite has been investigated spectrophotometrically in aqueous solution and found to be first order in both the complex and sulfite. The values of the observed rate constant depend on the pH, since it controls the spaciation of oxoanions of sulfur(IV). The effect of alkali cations (K+, Na+ and Li+) is attributed to triple-ion formation through an alkali cation bridging between two negatively charged reactants and facilitating the electron-transfer process. Kinetic data and activation parameters are interpreted in terms of an outer-sphere electron transfer mechanism. The reaction has also been analysed using the Marcus cross-section relationship for outer-sphere electron transfer reactions.  相似文献   

12.
We report here two novel synthetic pathways toward the preparation of a family of trimetallic diazide compounds of the type Cr(2)M(dpa)(4)(N(3))(2), with M = Cr (10), Mn (4), Fe (5), and Co (11). Reaction of either Cr(2)M(dpa)(4)(OTf)(2) (for M = Mn and Fe) or [Cr(2)M(dpa)(4)(MeCN)(2)](PF(6))(2) (for M = Cr and Co) with sodium azide in methanol leads to the formation of the corresponding diazide compounds, and single crystal X-ray diffraction measurements confirm the predicted structures. Compounds 4, 5, and 10 are all high-spin compounds, but 11 is a spin-crossover compound exhibiting low-spin behavior at low temperatures (~100 K). Thermolytic characterization by DSC and TGA reveals an exothermic reaction corresponding to the loss of two dinitrogen molecules from compounds 5, 10, and 11. Further characterization by solution NMR measurements and cyclic voltammetry are also presented.  相似文献   

13.
The reactions of salts of the anion [2-B10H9(N≡CMe)] with aliphatic alcohols ROH (R = C n H2n+1 (n = 1–6) CH2CH2(OEt), Pri, Bui, But, i-C5H11) are studied. These reactions result in hydrolytically stable imidates [2-B10H9{NH=C(OR)Me}]. Their structures were confirmed by the data from mass spectrometry, IR, 1H, 11B, and 13C NMR spectroscopy. The molecular geometry of [2(Z)-B10H9{NH=C(OBu)Me}], which formed in nucleophilic addition reaction of n-butyl alcohol to [2-B10H9(N≡CMe)], was established by X-ray diffraction analysis.  相似文献   

14.
The hydrothermal reaction of MoO3, V, Na2WO4· 2H2O, [N(CH2CH2)3N](1,4-diazabicyclo[2.2.2] octane), and H2O at 160°C for 90h gave dark-brown crystals of [HN(CH2CH2)3N]2[HMoVMoVI 5O19]·[N(CH2CH2)3N], (1), in 40% yield. Complex (1) is the first one-electron reduced mixed-valence hexamolybdate to be crystallized and structurally characterized. The crystal structure of (1) consists of discrete [HMoVMoVI 5O19]2– anions, [HN-(CH2CH2)3N]+ cations, and neutral [N(CH2CH2)3N] molecules of crystallization.  相似文献   

15.
The x-ray structural study showed that [N-(2-thienylidene)]benzhydrazide does not form a crystal hydrate. The molecules in the crystal are loosely packed and joined by linear chains of intermolecular hydrogen bonds (IHB),. Like the previously investigated [N-(furfurylidene)] benzhydrazide, [N-(2-thienylidene)]benzhydrazide crystals were sensitive to UV radiation. The similarity in the structure of these compounds confirms the hypothesis that intermolecular N O phototransfer of a proton along the IHB chain can take place efficiently in loose structures in the noncrystal hydrates of the compounds investigated, in contrast to the previously studied crystal hydrates.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 1, pp. 87–90, January, 1991.  相似文献   

16.
17.
18.
吴鼎铭  黄小荥 《结构化学》1994,13(5):385-388
SynthesisandStructureof[HOCH_2CH_2N(CH_3)_3]_4[Cu_4OCl_(10)]WuDing-Ming;HuangXiao-Ying;ZhuangHong-Hui(StateKeyLaboratoryofStruct?..  相似文献   

19.
Thiomethylation of para-toluidine and 4(5)-methyl-2-aminothiazoles was used to synthesize N,N′-dithol-4-yl-1,3,5-thiadiazinane and N,N′-[methylene-bis-(thiomethylene)]-bis-[4(5)-methyl-1,3-thiazole-2-amines]. A fungicidal and fungistatic effect toward some microscopic fungi, plant-disease-producing factor, was revealed for these compounds.  相似文献   

20.
Crystals of [Cr3O(CH3COO)6(H2O)3][UO2(CH3COO)3]·3H2O (I) were synthesized for the first time and studied by X-ray crystallography. The crystals of I are orthorhombic: a = 8.3561(3) ?, b = 16.8421(5) ?, c = 25.7448(9) ?, V = 3623.2(2) ?3, space group P212121, Z = 4, R = 0.0409. The structure is composed of trinuclear [Cr3O(CH3COO)6(H2O)3]+ complexes and mononuclear [UO2(CH3COO)3]? complexes classified with crystal-chemical groups A3M3B 6 2 M 3 1 (A = Cr3+, M3 = O2?, B2 = CH3COO?, M1 = H2O) and AB 3 01 (A = UO 2 2+ , B01 = CH3COO?), respectively. The complexes are bound to each other by electrostatic interactions and hydrogen bonds involving outer-sphere water molecules. The results of IR spectroscopic study of I are in good agreement with the structural data for the crystal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号