首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Efficient local implementation of a nonlocal multi-party quantum Toffoli gate is considered. We present and demonstrate a scheme that can improve significantly the implementation of this nonlocal (N + 1)-party gate by harnessing N entangled pairs of qubits as quantum channels and a (N+1)-dimensional qudit as a catalyser. The quantum circuit that does the proposed implementation is built entirely of local single-body and two-body gates, and has only (2N + 1) two-body gates. The method that we describe is independent of the particular physical system used to encode quantum information and the way in which the elemental gates are realized.  相似文献   

2.
Zheng-Yin Zhao 《中国物理 B》2021,30(8):88501-088501
Construction of optimal gate operations is significant for quantum computation. Here an efficient scheme is proposed for performing shortcut-based quantum gates on superconducting qubits in circuit quantum electrodynamics (QED). Two four-level artificial atoms of Cooper-pair box circuits, having sufficient level anharmonicity, are placed in a common quantized field of circuit QED and are driven by individual classical microwaves. Without the effect of cross resonance, one-qubit NOT gate and phase gate in a decoupled atom can be implemented using the invariant-based shortcuts to adiabaticity. With the assistance of cavity bus, a one-step SWAP gate can be obtained within a composite qubit-photon-qubit system by inversely engineering the classical drivings. We further consider the gate realizations by adjusting the microwave fields. With the accessible decoherence rates, the shortcut-based gates have high fidelities. The present strategy could offer a promising route towards fast and robust quantum computation with superconducting circuits experimentally.  相似文献   

3.

Reversible logic has been considered as an important solution to the power dissipation problem in the existing electronic devices. Many universal reversible libraries that include more than one type of gates have been proposed in the literature. This paper proposes a novel reversible n-bit gate that is proved to be universal for synthesizing reversible circuits. Reducing the reversible circuit synthesis problem to permutation group allows Schreier-Sims Algorithm for the strong generating set-finding problem to be used in the synthesize of reversible circuits using the proposed gate. A novel optimization rules will be proposed to further optimize the synthesized circuits in terms of the number of gates, the quantum cost and the utilization of library to achieve better results than that shown in the literature.

  相似文献   

4.
吴超  方卯发  肖兴  李艳玲  曹帅 《中国物理 B》2011,20(2):20305-020305
A scheme is proposed where two superconducting qubits driven by a classical field interacting separately with two distant LC circuits connected by another LC circuit through mutual inductance,are used for implementing quantum gates.By using dressed states,quantum state transfer and quantum entangling gate can be implemented.With the help of the time-dependent electromagnetic field,any two dressed qubits can be selectively coupled to the data bus (the last LC circuit),then quantum state can be transferred from one dressed qubit to another and multi-mode entangled state can also be formed.As a result,the promising perspectives for quantum information processing of mesoscopic superconducting qubits are obtained and the distributed and scalable quantum computation can be implemented in this scheme.  相似文献   

5.
Optimal construction of quantum operations is a fundamental problem in the realization of quantum computation. We here introduce a newly discovered quantum gate, B, that can implement any arbitrary two-qubit quantum operation with minimal number of both two- and single-qubit gates. We show this by giving an analytic circuit that implements a generic nonlocal two-qubit operation from just two applications of the B gate. Realization of the B gate is illustrated with an example of charge-coupled superconducting qubits for which the B gate is seen to be generated in shorter time than the CNOT gate.  相似文献   

6.
We investigate anisotropic XXZ Heisenberg spin-1 / 2 chains with control fields acting on one of the end spins, with the aim of exploring local quantum control in arrays of interacting qubits. In this work, which uses a recent Lie-algebraic result on the local controllability of spin chains with “always-on” interactions, we determine piecewise-constant control pulses corresponding to optimal fidelities for quantum gates such as spin-flip (NOT), controlled-NOT (CNOT), and square-root-of-SWAP (). We find the minimal times for realizing different gates depending on the anisotropy parameter Δ of the model, showing that the shortest among these gate times are achieved for particular values of Δ larger than unity. To study the influence of possible imperfections in anticipated experimental realizations of qubit arrays, we analyze the robustness of the obtained results for the gate fidelities to random variations in the control-field amplitudes and finite rise time of the pulses. Finally, we discuss the implications of our study for superconducting charge-qubit arrays.  相似文献   

7.
王云江  白宝明  李卓  彭进业  肖鹤玲 《中国物理 B》2012,21(2):20304-020304
We address the problem of encoding entanglement-assisted (EA) quantum error-correcting codes (QECCs) and of the corresponding complexity. We present an iterative algorithm from which a quantum circuit composed of CNOT, H, and S gates can be derived directly with complexity O(n2) to encode the qubits being sent. Moreover, we derive the number of each gate consumed in our algorithm according to which we can design EA QECCs with low encoding complexity. Another advantage brought by our algorithm is the easiness and efficiency of programming on classical computers.  相似文献   

8.
We investigate the local implementation of a nonlocal quantum Toffoli gate via partially entangled states. Firstly, we show how the nonlocal Toffoli gate can be implemented with unit fidelity and a certain probability by employing two partially entangled qubit pairs as quantum channels. The quantum circuit that does this proposed implementation is built entirely of local single-level and two-level gates if the target node harness a three-level qudit as a catalyser. This enables the construction of this key nonlocal quantum gate with existing technology. Then, we put forward a scheme to realize deterministic and exact implementation of this nonlocal gate via more partially entangled pairs. In this scheme, the control nodes’ local positive operator valued measurements (POVMs) lies at the heart. We construct the required POVMs. The fact that the deterministic and exact implementation of a nonlocal multi-qubit gate could be realized by using partially entangled qubit pairs and comparatively fewer resources cost is notable.  相似文献   

9.
Since Controlled-Square-Root-of-NOT (CV, CV?) gates are not permutative quantum gates, many existing methods cannot effectively synthesize optimal 3-qubit circuits directly using the NOT, CNOT, Controlled-Square-Root-of-NOT quantum gate library (NCV), and the key of effective methods is the mapping of NCV gates to four-valued quantum gates. Firstly, we use NCV gates to create the new quantum logic gate library, which can be directly used to get the solutions with smaller quantum costs efficiently. Further, we present a novel generic method which quickly and directly constructs this new optimal quantum logic gate library using CNOT and Controlled-Square-Root-of-NOT gates. Finally, we present several encouraging experiments using these new permutative gates, and give a careful analysis of the method, which introduces a new idea to quantum circuit synthesis.  相似文献   

10.
A novel (t,n)-threshold scheme for the multi-party quantum group signature is proposed based on the irregular quantum Fourier transform, in which every t-qubit quantum message needs n participants to generate the quantum group signature. All the quantum operation gates in the quantum circuit can be distributed and arranged randomly in the irregular QFT algorithm, which can increase the von Neumann entropy of the signed quantum message and the randomicity of the quantum signature generation significantly. The generation and verification of the quantum group signature can be both performed in quantum circuits with the parallel algorithm. Security analysis shows that an available and legal quantum (t,n)-threshold group signature can be achieved.  相似文献   

11.
Optimal implementation of quantum gates is crucial for designing a quantum computer. We consider the matrix representation of an arbitrary multiqubit gate. By ordering the basis vectors using the Gray code, we construct the quantum circuit which is optimal in the sense of fully controlled single-qubit gates and yet is equivalent with the multiqubit gate. In the second step of the optimization, superfluous control bits are eliminated, which eventually results in a smaller total number of the elementary gates. In our scheme the number of controlled NOT gates is O(4(n)) which coincides with the theoretical lower bound.  相似文献   

12.
Quantum circuit model has been widely explored for various quantum applications such as Shors algorithm and Grovers searching algorithm. Most of previous algorithms are based on the qubit systems. Herein a proposal for a universal circuit is given based on the qudit system, which is larger and can store more information. In order to prove its universality for quantum applications, an explicit set of one-qudit and two-qudit gates is provided for the universal qudit computation. The one-qudit gates are general rotation for each two-dimensional subspace while the two-qudit gates are their controlled extensions. In comparison to previous quantum qudit logical gates, each primitive qudit gate is only dependent on two free parameters and may be easily implemented. In experimental implementation, multilevel ions with the linear ion trap model are used to build the qudit systems and use the coupling of neighbored levels for qudit gates. The controlled qudit gates may be realized with the interactions of internal and external coordinates of the ion.  相似文献   

13.
We provide an analytic way to implement any arbitrary two-qubit unitary operation, given an entangling two-qubit gate together with local gates. This is shown to provide explicit construction of a universal quantum circuit that exactly simulates arbitrary two-qubit operations in SU(4). Each block in this circuit is given in a closed form solution. We also provide a uniform upper bound of the applications of the given entangling gates, and find that exactly half of all the controlled-unitary gates satisfy the same upper bound as the CNOT gate. These results allow for the efficient implementation of operations in SU(4) required for both quantum computation and quantum simulation.  相似文献   

14.
This study examines the possibility of finding perfect entanglers for a Hamiltonian which corresponds to several quantum information platforms of interest at the present time. However, in this study, a superconducting circuit is used that stands out from other quantum-computing devices, especially because transmon qubits can be coupled via capacitors or microwave cavities, which enables to combine high coherence, fast gates, and high flexibility in its design parameters. There are currently two factors limiting the performance of superconducting processors: timing mismatch and the limitation of entangling gates to two qubits. In this work, a two-qubit SWAP and a three-qubit Fredkin gate is presented, additionally, a perfect adiabatic entanglement generation between two and three programmable superconducting qubits is also demonstrated. Furthermore, the impact of random dephasing, emission, and absorption noises on the quantum gates and entanglement is also demonstrated in this study. It is demonstrated by numerical simulation that CSWAP gate and W-state generation can be achieved perfectly in one step with high reliability under weak coupling conditions. Hence, this scheme could contribute to quantum teleportation, quantum communication, and some other areas of quantum information processing.  相似文献   

15.
A 1→2 telecloning solution for an arbitrary three-particle entangled W state is proposed in which two four-particle entangled states are used as quantum channels. It is proposed that the three-particle W state can be telecloned based on the quantum teleportation and the local copying of entanglement, and the fidelity of each clone depends on the input state. This scheme can be generalized into the case of 1→N (N>2) telecloning of an arbitrary three-particle W state. Furthermore, another scheme for 1→N (N≥2) telecloning of an arbitrary n-particle (n≥4) W state is proposed, the multi-bit controlled-NOT (CNOT) gates and additional particles are needed in this case. Project 10574060 supported by the National Natural Science Foundation of China.  相似文献   

16.
《中国物理 B》2021,30(7):70309-070309
Homomorphic encryption has giant advantages in the protection of privacy information. In this paper, we present a new kind of probabilistic quantum homomorphic encryption scheme for the universal quantum circuit evaluation. Firstly,the pre-shared non-maximally entangled states are utilized as auxiliary resources, which lower the requirements of the quantum channel, to correct the errors in non-Clifford gate evaluation. By using the set synthesized by Clifford gates and T gates, it is feasible to perform the arbitrary quantum computation on the encrypted data. Secondly, our scheme is different from the previous scheme described by the quantum homomorphic encryption algorithm. From the perspective of application, a two-party probabilistic quantum homomorphic encryption scheme is proposed. It is clear what the computation and operation that the client and the server need to perform respectively, as well as the permission to access the data. Finally, the security of probabilistic quantum homomorphic encryption scheme is analyzed in detail. It demonstrates that the scheme has favorable security in three aspects, including privacy data, evaluated data and encryption and decryption keys.  相似文献   

17.
We propose a new class of unconventional geometric gates involving nonzero dynamic phases, and elucidate that geometric quantum computation can be implemented by using these gates. Comparing with the conventional geometric gate operation, in which the dynamic phase shift must be removed or avoided, the gates proposed here may be operated more simply. We illustrate in detail that unconventional nontrivial two-qubit geometric gates with built-in fault-tolerant geometric features can be implemented in real physical systems.  相似文献   

18.
We demonstrate a reconfigurable all-optical logic gate for NRZ-PolSK signal based on FWM in a highly nonlinear fiber at 10 Gb/s. Half subtracter, XOR, AB?, āB or XNOR, AND, and NOR logic gates can be implemented simultaneously. The input power for the HNLF is optimized to be as low as about 15.2 dBm and the high Q factors above 8 dB for eye diagrams are achieved. Experimental results show Q factors of AB?, āB, AND, and NOR were higher than those of XOR, and XNOR. Error-free operation is achieved experimentally for 10 Gb/s 27-1 pseudorandom bit sequence (PRBS) data. Power penalties for the logic gate are less than 3 dB. Simulation analysis about the wavelength characteristic for all logic gates is given and it predicts that the reconfigurable logic gate can realize error-free operation when the wavelength separation is less than 5 nm.  相似文献   

19.
In the qubit semantics the meaning of any sentence α is represented by a quregister: a unit vector of the n–fold tensor product ⊗n2, where n depends on the number of occurrences of atomic sentences in α (see Cattaneo et al.). The logic characterized by this semantics, called quantum computational logic (QCL), is unsharp, because the noncontradiction principle is violated. We show that QCL does not admit any logical truth. In this framework, any sentence α gives rise to a quantum tree, consisting of a sequence of unitary operators. The quantum tree of α can be regarded as a quantum circuit that transforms the quregister associated to the occurrences of atomic subformulas of α into the quregister associated to α.  相似文献   

20.
It is widely believed that Shor's factoring algorithm provides a driving force to boost the quantum computing research.However, a serious obstacle to its binary implementation is the large number of quantum gates. Non-binary quantum computing is an efficient way to reduce the required number of elemental gates. Here, we propose optimization schemes for Shor's algorithm implementation and take a ternary version for factorizing 21 as an example. The optimized factorization is achieved by a two-qutrit quantum circuit, which consists of only two single qutrit gates and one ternary controlled-NOT gate. This two-qutrit quantum circuit is then encoded into the nine lower vibrational states of an ion trapped in a weakly anharmonic potential. Optimal control theory(OCT) is employed to derive the manipulation electric field for transferring the encoded states. The ternary Shor's algorithm can be implemented in one single step. Numerical simulation results show that the accuracy of the state transformations is about 0.9919.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号