首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanical anisotropy of regenerated cellulose films is investigated, first, on the basis of the theory of infinitesimal elasticity. Fairly good agreement of calculated with observed results is obtained on the basis of orthogonal anisotropy with respect to the machine direction and the transverse and thickness directions of the films. The shear modulus G23 along the film plane and the Poisson ratio v32 are 1.5 times; 102 kg/mm2 and about 0.4, respectively, in the standard dry state. Second, the mechanical anisotropy in three different dry states is analyzed in terms of the degree of biaxial orientation of two kinds of structural units, cellulose II crystallites and noncrystalline chain segments, and their mechanical anisotropy. The calculation for averaging the mechanical anisotropies of these structural units on the basis of the homogeneous strain hypothesis gives results much higher than the experimental data, whereas the calculation on the basis on the homogeneous stress hypothesis gives results rather lower than experiment. As a modification of the two extreme calculations, a different averaging gives considerably better agreement between the calculated and observed results. The mechanical anisotropy in the wet state is further analyzed primarily in terms of the degree of biaxial orientation of noncrystalline chains by a modification of Krigbaum treatment, based on application of the kinetic theory of entropy elasticity for semicrystalline polymers, to anisotropic systems. The calculation gives results, however, much lower than those obtained experimentally, unless the ratio of the end-to-end distance of the noncrystalline chain to its fully stretched length is taken as unusually large. This may be due to underestimation of the contribution of the crystalline phase to terms of the same type as appear in the Krigbaum treatment.  相似文献   

2.
The molecular orientation behavior of regenerated cellulose, in both crystalline and noncrystalline phases, was investigated quantitatively under various conditions during coagulation-regeneration from viscose solution and during drying of the resulting gel film. It was concluded that the stronger the tensions which arise parallel to the film surface during coagulation-regeneration and drying of the gel film, the more prominent become the uniplanar orientation of the (101) crystal plane and planar orientations of the crystal b axis and noncrystalline chain segments, all parallel to the film surface and associated with considerable distortion and disintegration of the regenerated crystal. This conclusion suggests an orientation mechanism of the cellulose II crystal, namely, rotation of the crystal around the U(101 ) axis associated with slippage of the (101) crystal plane, the most highly hydrated and most readily dislocated plane, in the direction of the tension, which is also parallel to the surface of the film. The behavior of this type of uniplanar orientation of the (101) crystal plane is characterized semiquantitatively by comparing observed distributions of the orientation of crystallographic axes with those calculated on the basis of a relatively simple model for crystal orientation.  相似文献   

3.
The relationship between the optical anisotropy of high polymeric materials in bulk and the orientation of structural units within the materials was described in general by using several types of mean values of the orientation distribution function of three Eulerian angles, i.e., the orientation factors, under some assumptions about the symmetry of the function being applicable for the most of the industrial products. A newly defined biaxial orientation factor, Fθηi = 〈sin2 θj cos 2ηj〉, where θj and ηj are the polar and azimuthal angles of the jth axis within the structural unit with respect to the bulk axes, may relate the biaxial orientation of the structural units to the dichroic orientation factors, which are measurable optical anisotropic indices of the bulk materials. Some applications of the results to the birefringence and infrared and dye dichroism are also discussed.  相似文献   

4.
The melting behavior of restrained isotactic polypropylene fibers is examined quantitatively in terms of the influence the anisotropic structural state of the polymer has on the observed properties. Two endotherm peaks are observed to occur in some of the samples. The formation and location of the multiple peaks are determined by the orientation of the noncrystalline chains, and is independent of the fabrication path used to achieve that orientation. Above a certain minimum orientation of the noncrystalline chains, multiple endotherm peak formation occurs. The high-temperature endotherm (T2M) extrapolates to an ultimate melting point for fully oriented noncrystalline chains of 220°C, while the lower-temperature endotherm (T1M) extrapolates to an ultimate melting point of 185°C. Noncrystalline chain orientation influences the endotherm temperature through its changing configurational entropy. It is shown quantitatively that the noncrystalline polymer must be considered as plastically deformed, since rubber elasticity theory is not followed as predicted. The melting behavior of isothermally crystallized samples are also reported to further elucidate the nature of the observed endotherms.  相似文献   

5.
Infrared dichroism is employed to study the orientation of chain molecules in linear and ethyl-branched polyethylene in the crystalline and noncrystalline regions during drawing and subsequent annealing. A crystalline (1894 cm?1) and a noncrystalline (1368 cm?1) band, as well as the bands at 909 cm?1 and 1375 cm?1 resulting from vinyl endgroups and methyl endgroups and sidegroups, are studied. For these bands relative orientation functions are derived and compared as a function of draw ratio and annealing temperature. It is shown that the relative orientation functions as derived from the dichroism of the noncrystalline, vinyl and methyl bands follow the same curve while the orientation function for the crystalline bands does not. These results support a two-phase model for partially crystalline polyethylene and additionally favor segregation of the endgroups and sidegroups in the noncrystalline component during crystallization. It is further shown that shrinkage occurs at the temperature at which the noncrystalline chain molecules start to disorient. From the dichroism of the methyl groups in ethyl-branched polyethylene, a value for the mean orientation of the noncrystalline chain molecules is calculated. We obtain for the orientation function of the noncrystalline regions at highest draw ratios (λ = 15–20), f = 0.35–0.57, while the chain molecules in the crystallites are nearly perfectly oriented (f ≈ 1.0). On the assumption that the noncrystalline component consists of folds, tie molecules, and chain ends, the different contributions of these components to the overall orientation are estimated. From these the relative number of CH2 groups incorporated into folds, tie molecules, and cilia can be derived. Further, on the basis of a simple structural model, the relative number of chains on the crystal surface contributing to the different noncrystalline components and their average length are estimated.  相似文献   

6.
Nematic Ordered Cellulose (NOC) film that exhibits a noncrystalline yet highly ordered form was prepared by stretching a water‐swollen cellulose gel obtained in a unique manner with coagulation of cellulose molecules dissolved in the N,N‐dimethylacetamide/LiCl solvent system. In this article, structural characteristics of this unique film were investigated. Orientation of the molecular chains in the noncrystalline regions across the entire film were stable after immersing in water at room temperature, though conventional amorphous cellulose regions are in any forms believed fairly to be recrystallized under a humid atmosphere. Even 30 days after immersing in water at 50 °C, neither crystallization nor disordering of the chains occurred in the NOC film. On the contrary, the film was capable of being transformed into films composed of cellulose polymorphs domains where the molecular orientation was still maintained as the initial film under various mild conditions that both cotton and cellophane did not show any changes on their structure. These contradictory properties of the NOC film proved to be dependent on its unique supermolecular structure. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2850–2859, 2007  相似文献   

7.
A 32‐membered library of poly(2‐oxazoline)‐based hydrogels of the composition p EtOx m‐p PhOx n‐p PBO q (m/n = 150/0, 100/50, 50/100, and 0/150; q = 1.5–30) was prepared from 2‐ethyl‐ ( EtOx ), 2‐phenyl‐2‐oxazoline ( PhOx ), and phenylene‐1,3‐bis‐(2‐oxazoline) ( PBO ). The polymerizations were performed from ground monomer mixtures at 140 °C in a single‐mode microwave reactor in reaction times as short as 1 h. Purified hydrogels, containing no residual monomers, were obtained in yields of 95% or higher. Acid‐mediated hydrolysis rates as well as swelling degrees of the hydrogels were adjustable over a broad range; swelling degrees in water/ethanol/dichloromethane ranged from 0 to 13.8/11.7/20.0. The hydrogels could incorporate organic molecules according to in situ or post‐synthetic routines. Post‐synthetic routines enabled for the preparation of hydrogels from which the incorporated compounds were only released through diffusion processes if the solvent was changed or through hydrogel degradation if the pH was lowered.  相似文献   

8.
Two distinguishable effects of thermal exposure of biaxially oriented poly(ethylene terephthalate) (PET) have been observed in the temperature range from room temperature to 140°C. Upon heating above the glass transition temperature Tg of the film an irreversible shrinkage of a few percent occurred with a concomitant decrease in the rate of creep. Some loss of orientation in the noncrystalline phase with an attendant slight increase in density is believed to be responsible. Since the film was anisotropic in its plane, different amounts and rates of shrinkage were observed along with differing thermal expansion coefficients in various directions relative to the primary optic axis. Upon cooling the 50% crystalline PET from above Tg to lower temperatures, reversible “physical aging” was observed. Creep rates were found to decrease with the residence time below Tg. As with purely amorphous polymers, the effects of the aging are removed by heating the specimen above Tg where the density of the amorphous phase achieves equilibrium values.  相似文献   

9.
Due to anisotropic swelling of mixed SiO/SiO2films induced by water adsorption, geometrically regular film buckling from the substrate was observed in the form of linear spatially periodical structures with longitudinal orientation. The mechanical stresses in these films and geometry of the formed structures were studied. A mechanism was proposed to describe the observed deformation effect.  相似文献   

10.
11.
The x-ray pole-figure technique has been applied to the study of orientation in Valonia cellulose. It is found that the maximum of the orientation distribution of the (2 20) poles of crystallites in Valonia cell walls is precisely normal to the cell wall surface, and the pole population is denser in the longitudinal direction than in the transverse direction. The orientation is interpreted as a typical uniplanar-axial orientation after Heffelfinger and Burton's classification: a uniplanar orientation in (22 0), and two types of uniaxial orientation in the (220) and (400) planes based on the unit cell parameters for Valonia cellulose. The degree of biaxial orientation of the (22 0), (220), and (400) plane normals as well as three principal crystallographic axes are shown by Desper's equilateral triangle plots.  相似文献   

12.
13.
The properties and structure of ultrahigh-modulus filaments were investigated for wholly aromatic copolyesters (WACPs) containing 60 and 70 mol% p-oxybenzoate, based on p-hydroxybenzoic acid, p,p′-biphenol, terephthalic acid, and isophthalic acid and for poly(ethylene terephthalate co-p-oxybenzoate) containing 60 mol% p-oxybenzoate. As-spun filaments with varying degrees of molecular orientation were spun from melts by taking the spin-extension ratio as a variable at given temperatures. The as-spun filaments were further subjected to thermal annealing. Changes in the structural ordering with the extension ratio were monitored by wide-angle x-ray scattering, scanning electron microscopy, viscoelastic properties, and measurements of the thermal expansion coefficient. The increase in modulus is correlated well with the crystallite orientation at a relatively low extension ratio. However, for extension ratios above 10, the modulus of as-spun filaments is almost independent of the crystallite orientation. Modulus values as high as 100 GPa are obtained for WACP filaments spun at extension ratios above 500. It is suggested that ultrahigh-modulus values can be reached in highly oriented noncrystalline chains. Furthermore, the results for annealed filaments indicated that the relaxation of molecular orientation occurs partially in the oriented noncrystalline regions during the stage of long-time annealing above Tg, leading to depression of the modulus.  相似文献   

14.
Samples of oxidized cellulose (OC) with various carboxyl contents and degrees of crystallinity were obtained by the oxidation of native and mercerized cellulose with a solution of nitrogen(IV) oxide in CCl4. A detailed characterization of these OC samples was performed. The effect of oxidation conditions (concentration of N2O4 in the solution and oxidation time) and starting cellulose material on OC characteristics (carboxyl, carbonyl and nitrogen content, degree of crystallinity and polymerization, surface area and swelling, and acidic properties) was investigated. Reactivity in the oxidation process was higher in mercerized cellulose than in native cellulose. The action of dilute solutions (10–15%) of N2O4 did not affect the degree of crystallinity of cellulose samples. Under these conditions, the oxidation took place mainly in amorphous regions and on the surface of crystallites. Oxidation in a concentrated (40%) N2O4 solution led to the destruction of crystallites, which increased the surface area and swelling of cellulose in water. The surface area and the swelling of OC samples increased with a decrease in the index of crystallinity. The acidic properties of OC were shown to increase with an increase of swelling in water. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4785–4791, 2004  相似文献   

15.
Cellulose mesophases were obtained by preparing concentrated solutions of cellulose (20–55%) in a mixture of N-methyl-morpholine N-oxide (MMNO) and water. The anisotropy depends on four interconnected parameters: the temperature of the solution which, in general, must be lower than 90°C; the concentration of cellulose which must exceed 20%; a water content such that the mole ratio water/anhydrous MMNO is smaller than unity; and the degree of polymerization of the dissolved cellulose. The anisotropic cellulose solutions can readily be oriented during extrusion or casting thus giving fibers or films which upon regeneration exhibit high orientation.  相似文献   

16.
The orientation of molecular chains in regenerated cellulose films and fibers was characterized using in situ wide‐angle X‐ray diffraction and birefringence measurements coupled with tensile tests. Generally, an increase in the degree of preferred orientation in the direction of applied strain was observed during testing. For both types of specimen this relationship was clearly linear, irrespective of whether the volume‐averaged preferred orientation or the orientation in the crystalline and noncrystalline regions was considered. Interestingly, the rate of change in orientation induced by external strain was significantly higher for noncrystalline regions when compared with that of crystalline regions. This difference was more pronounced for cellulose fibers when compared with films. Upon the reversal of straining in cellulose films until zero stress, the degree of orientation diminished in a linear fashion. However, a large part of the orientation, both crystalline and noncrystalline, induced by tensile straining remained permanent and increased further when straining was resumed. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 297–304, 2008  相似文献   

17.
Drawable water‐swollen cellulose films were prepared by coagulating in water two different cellulose organic solution systems. The drawability of the water‐swollen films was dependent on the rate of coagulation. Transparent films prepared by the slow coagulation showed good drawability and had a maximum draw ratio of 2.0. However, the drawn films maintained the highly noncrystalline state even after dried at 50°C under vacuum. X‐ray analysis and polarized FT‐IR measurements performed under a saturated deuterium oxide vapor of these dried drawn films, prepared by slow coagulation, showed that their noncrystalline regions (more than 80%) as well as crystalline regions (less than 20%) were highly oriented by the drawing process. Furthermore, meridional intensity curves in the X‐ray diffraction exhibited interesting patterns even though the drawn sample was highly noncrystalline. In fact, they are quite different from those in regenerated cellulose II fibers. However, despite this increase in draw ratio and in the orientation of the chains, the number of crystalline domains in the films did not increase significantly. This may perhaps be attributed to the three‐dimensional network structure resulting from the intermolecular hydrogen bonds between chains which are maintained through the drawing process and which can hinder the crystallization of cellulose. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 451–459, 1999  相似文献   

18.
NMR measurements on undrawn polyethylene (PE) samples in contact with a solvent such as C2Cl4 indicate an increase in the mobility of the mobile chain segments as compared to dry samples. Highly drawn PE shows no such effect. This is because Sa, the sorption per unit mass of noncrystalline material present, decreases from 20.9 wt.-% (dry basis), found for undrawn quenched PE, to 0.63 wt.-% after drawing (Sa determined at 25°C. and 0.80 vapor activity). Drawing also reduces the segment mobility according to the NMR spectrum. It is shown that these effects are caused by considerable structural changes occurring in the noncrystalline regions of PE upon drawing. Annealing of drawn PE samples at successively higher temperatures leads to a gradual relaxation of the noncrystalline regions towards the state characteristic of undrawn PE. With increasing annealing temperature Sa as well as the mobility approach values found with undrawn PE.  相似文献   

19.
Bleached acid sulphite and kraft Eucalyptus globulus pulps were subjected to treatment at high hydrostatic pressure (400 MPa during 10 min). The associated structural changes of cellulose were evaluated by X-ray scattering, solid-state NMR and infrared spectroscopy. The high pressure treatment promoted the growth of crystalline domains predominantly via lateral aggregation (cocrystallization) and, to some extent, due to the accretion of cellulose from noncrystalline domains (recrystallization). The treated pulps exhibited increment of the amount of strongly bound water and improved accessibility to amorphous domains. The high pressure treatment of dried sulphite pulp led to restoration, at least partially, of its swelling capacity thus diminishing the hornification features. Pressure treated dried sulphite pulp showed improved fibre bonding capacity at simultaneously increased bulk of the produced handsheets. The results obtained clearly showed the potential of high pressure treatments for the modification of cellulosic fibres in different applications.  相似文献   

20.
The 13C NMR spin-lattice relaxation times (T1) of anhydroglucose units vary with the number of substituents, and the T1 values of unsubstituted anhydroglucose units of O-carboxymethylcellulose are longer than those of amylose. Those results indicate that in water, the rotational motions of anhydroglucose units of cellulose derivative are quite important local motions contributing to the 13C NMR spin-lattice relaxation, and within a cellulose chain, anhydroglucose units rotate with different degrees of freedom depending on their environment. Moreover, the 13C NMR spin-lattice relaxation data indicate that the mobilities of ionic substituents are dependent on substitution positions as well as their ionic interaction. © 1995 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号