首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Monolayer Ga adsorption on Si surfaces has been studied with the aim of forming p-delta doped nanostructures. Ga surface phases on Si can be nitrided by N2+ ion bombardment to form GaN nanostructures with exotic electron confinement properties for novel optoelectronic devices. In this study, we report the adsorption of Ga in the submonolayer regime on 7 × 7 reconstructed Si(1 1 1) surface at room temperature, under controlled ultrahigh vacuum conditions. We use in-situ Auger electron spectroscopy, electron energy loss spectroscopy and low energy electron diffraction to monitor the growth and determine the properties. We observe that Ga grows in the Stranski-Krastanov growth mode, where islands begin to form on two flat monolayers. The variation in the dangling bond density is observed during the interface evolution by monitoring the Si (LVV) line shape. The Ga adsorbed system is subjected to thermal annealing and the residual thermal desorption studied. The difference in the adsorption kinetics and desorption dynamics on the surface morphology is explained in terms of strain relaxation routes and bonding configurations. Due to the presence of an energetic hierarchy of residence sites of adatoms, site we also plot a 2D phase diagram consisting of several surface phases. Our EELS results show that the electronic properties of the surface phases are unique to their respective structural arrangement.  相似文献   

2.
Zhipeng Chang 《Surface science》2007,601(9):2005-2011
Methanethiol adsorbed on Ru(0 0 0 1)-p(2 × 2)O has been studied by TPD and XPS. The dissociation of methanethiol to methylthiolate and hydrogen at 90 K is evidenced by the observation of hydroxyl and water. The saturation coverage of methylthiolate is ∼0.15 ML, measured by both XPS and TPD. A detailed analysis suggests that only the hcp-hollow sites have been occupied. Upon annealing the surface, water and hydroxyl desorb from the surface at ∼210 K. Methylthiolate decomposes to methyl radical and atomic sulphur via C-S cleavage between 350 and 450 K. Some methyl radicals (0.05 ML) have been transferred to Ru atoms before they decompose to carbon and hydrogen. The rest of methyl radicals desorb as gaseous phase. No evidence for the transfer of methyl radical to surface oxygen has been found.  相似文献   

3.
A study of surface and interface properties of reconstructed Au-SiC(0 0 0 1) surfaces is reported. Two reconstructions were prepared on SiC(0 0 0 1), a √3 × √3R30° and a Si-rich 3 × 3, before Au deposition and subsequent annealing at different temperatures. For the Si-rich 3 × 3 surface the existence of three stable reconstructions 2√3 × 2√3R30°, 3 × 3 and 5 × 5 are revealed after deposition of Au layers, 4-8 Å thick, and annealing at progressively higher temperatures between 500 and 950 °C. For the 2√3 surface two surface shifted Si 2p components are revealed and the Au 4f spectra clearly indicate silicide formation. The variation in relative intensity for the different core level components with photon energy suggests formation of an ordered silicide layer with some excess Si on top. Similar core level spectra and variations in relative intensity with photon energy are obtained for the 3 × 3 and 5 × 5 phases but the amount of excess Si on top is observed to be smaller and an additional weak Si 2p component becomes discernable.For the √3 surface the evolution of the core level spectra after Au deposition and annealing is shown to be distinctly different than for the Si-rich 3 × 3 surface and only one stable reconstruction, a 3 × 3 phase, is observed at similar annealing temperatures.  相似文献   

4.
We investigate the low-coverage regime of vanadium deposition on the Si(1 1 1)-7 × 7 surface using a combination of scanning tunnelling microscopy (STM) and density-functional theory (DFT) adsorption energy calculations. We theoretically identify the most stable structures in this system: (i) substitutional vanadium atoms at silicon adatom positions; (ii) interstitial vanadium atoms between silicon adatoms and rest atoms; and (iii) interstitial vanadium - silicon adatom vacancy complexes. STM images reveal two simple vanadium-related features near the Si adatom positions: bright spots at both polarities (BB) and dark spots for empty and bright spots for filled states (DB). We relate the BB spots to the interstitial structures and the DB spots to substitutional structures.  相似文献   

5.
Ming-Shu Chen 《Surface science》2007,601(22):5162-5169
The adsorption of K atoms on Cu(0 0 1) has been studied by low-energy electron diffraction (LEED) at room temperature (RT) and 130 K. At RT, a (3 × 2)-p2mg LEED pattern with single-domain was observed at coverage of 0.33, whereas the orthogonal two-domain was found at 130 K. At 130 K, a c(4 × 2) pattern with orthogonal two-domain was observed at coverage 0.25. Both the (3 × 2)-p2mg and c(4 × 2) structures have been determined by a tensor LEED analysis. It is demonstrated that K atoms are adsorbed on surface fourfold hollow sites in the c(4 × 2), while in the (3 × 2) structure two K atoms in the unit cell are located at an asymmetric site with a glide-reflection-symmetry. The asymmetric site is at near the midpoint between the exact hollow site and bridge-site but slightly close to the hollow site. A rumpling of 0.07 Å in the first Cu layer was confirmed, which might stabilize K atoms at the asymmetric site. Surface structures appearing in a coverage range 0.25-0.33 are discussed in terms of the occupation of the asymmetric site with increase of coverage.  相似文献   

6.
E. Vasco 《Surface science》2005,575(3):247-259
The surface relaxation mechanisms governing the preferential adsorption of metal atoms onto the faulted half-cells of a 7 × 7 reconstructed Si(1 1 1) surface are studied by rate equations and kinetic Monte Carlo simulations. The versatility of these mechanisms to control the formation of quasi-perfect 2D arrays of metal clusters is revealed via the optimization of the deposition/annealing conditions as a function of operating mechanisms, the Si(1 1 1)7 × 7 energy landscape, and the thermal stability of the created clusters. The influence on the formation process of such nanoarrays of the balance between kinetic limitations, which are especially relevant on Si(1 1 1)7 × 7, and thermodynamic tendencies is discussed.  相似文献   

7.
The consequences of Ge deposition on Br-terminated Si(1 0 0) were studied with scanning tunneling microscopy at ambient temperature after annealing at 650 K. One monolayer of Br was sufficient to prevent the formation of Ge huts beyond the critical thickness of 3 ML. This is possible because Br acts as a surfactant whose presence lowered the diffusivity of Ge adatoms. Hindered mobility was manifest at low coverage through the formation of short Ge chains. Further deposition resulted in the extension and connection of the Ge chains and gave rise to the buildup of incomplete layers. The deposition of 7 ML of Ge resulted in a rough surface characterized by irregularly shaped clusters. A short 800 K anneal desorbed the Br and allowed Ge atoms to reorganize into the more energetically favorable “hut” structures produced by conventional Ge overlayer growth on Si(1 0 0).  相似文献   

8.
The surface structure of Si(1 1 1)-6 × 1-Ag was investigated using surface X-ray diffraction techniques. By analyzing the CTR scattering intensities along 00 rod, the positions of the Ag and reconstructed Si atoms perpendicular to the surface were determined. The results agreed well with the HCC model proposed for a 3 × 1 structure induced by alkali-metals on a Si(1 1 1) substrate. The heights of the surface Ag and Si atoms did not move when the surface structure changed from Si(1 1 1)-√3 × √3-Ag to Si(1 1 1)-6 × 1-Ag by the desorption of the Ag atoms. From the GIXD measurement, the in-plane arrangement of the surface Ag atoms was determined. The results indicate that the Ag atoms move large distances at the phase transition between the 6 × 1 and 3 × 1 structures.  相似文献   

9.
The bonding and growth mechanism of photochemically attached olefin molecules to (1 0 0)(2 × 1):H diamond is characterized using atomic force (AFM) and scanning tunneling microscopy (STM) experiments in combination with molecular orbital calculations. To identify growth schemas, diamond surfaces after 10, 40 and 90 min of photo-chemically stimulated growth have been characterized. These data show clearly island formation which is discussed taking into account a growth model from silicon. The island growth shows no directional properties which are attributed to arrangement and geometrical properties of hydrogen terminated carbon bonds at the surface of (1 0 0) oriented (2 × 1) reconstructed diamond.  相似文献   

10.
The adsorption and desorption of sulphur on the clean reconstructed Au(1 1 0)-(1 × 2) surface has been studied by low energy electron diffraction, Auger electron spectroscopy and temperature programmed desorption. The results obtained show a complex behaviour of the S/Au(1 1 0) system during sulphur desorption at different temperatures. Two structures of the stable ordered sulphur overlayer on the Au(1 1 0) surface, p(4 × 2) and c(4 × 4), were found after annealing the S/Au(1 1 0) system at 630 K and 463 K, respectively. The corresponding sulphur coverage for these overlayers was estimated by AES signal intensity analysis of the Au NOO and S LMM Auger lines to be equal to 0.13 ML and 0.2 ML, respectively. Both sulphur structures appear after removing an excess of sulphur, which mainly desorbs at 358 K as determined from TPD spectra. Furthermore, it was not possible to produce the lower coverage p(4 × 2) sulphur structure by annealing the c(4 × 4) surface. In the case of the p(4 × 2) S overlayer on the Au(1 1 0)-(1 × 2) surface it is proposed that the sulphur is attached to “missing row” sites only. The c(4 × 4) S overlayer arises via desorption of S2 molecules that are formed on the surface due to mobility of sulphur atoms after a prolonged anneal.  相似文献   

11.
Growth and surface morphology of epitaxial Fe(1 1 0)/MgO(1 1 1)/Fe(1 1 0) trilayers constituting a magnetic tunnel junction were investigated by low-energy electron diffraction (LEED) and scanning tunneling microscopy (STM). STM reveals a grain-like growth mode of MgO on Fe(1 1 0) resulting in dense MgO(1 1 1) films at room temperature as well as at 250 °C. As observed by STM, initial deposition of MgO leads to a partial oxidation of the Fe(1 1 0) surface which is confirmed by Auger electron spectroscopy. The top Fe layer deposited on MgO(1 1 1) at room temperature is relatively rough consisting of clusters which can be transformed by annealing to an atomically flat epitaxial Fe(1 1 0) film.  相似文献   

12.
Scanning tunneling microscopy (STM) has been used to study the various possible structures of adsorbed Bi on the Cu(1 0 0) surface, after equilibration at a temperature of 520 K. All of the structures previously identified by X-ray diffraction (lattice gas, c(2 × 2), c(9√2 × √2)R45°, and p(10 × 10), in order of increasing Bi-coverage) were found to be present on a single sample produced by diffusing Bi onto the Cu(1 0 0) surface from a 3-d source. By investigating the possible coexistence of various pairs of phases, it was demonstrated that the c(2 × 2) phase transforms to the c(9√2 × √2)R45° phase by a first order transition, whereas the transition from c(9√2 × √2)R45° to p(10 × 10) is continuous. In addition, the structure of surface steps was studied as a function of Bi-coverage. The results showed that the presence of Bi changes the nature of the step-step interactions at the Cu(1 0 0) surface from repulsive to attractive. The attractive step-step interactions transform any small deviations from the nominal (1 0 0) orientation of the Cu substrate into (3 1 0) microfacets. When compared with the known equilibrium crystal shape (ECS) of Bi-saturated Cu, the observed microfaceting may imply that the ECS of Cu-Bi alloys is temperature dependent.  相似文献   

13.
The adsorption and reactivity of SO2 on the Ir(1 1 1) and Rh(1 1 1) surfaces were studied by surface science techniques. X-ray photoelectron spectroscopy measurements showed that SO2 was molecularly adsorbed on both the Ir(1 1 1) surface and the Rh(1 1 1) surface at 200 K. Adsorbed SO2 on the Ir(1 1 1) surface disproportionated to atomic sulfur and SO3 at 300 K, whereas adsorbed SO2 on the Rh(1 1 1) surface dissociated to atomic sulfur and oxygen above 250 K. Only atomic sulfur was present on both surfaces above 500 K, but the formation process and structure of the adsorbed atomic sulfur on Ir(1 1 1) were different from those on Rh(1 1 1). On Ir(1 1 1), atomic sulfur reacted with surface oxygen and was completely removed from the surface, whereas on Rh(1 1 1), sulfur did not react with oxygen.  相似文献   

14.
The covalent attachment of alkyl groups to silicon surfaces, via carbon-silicon bond formation, has been attempted using gas-surface reactions starting from Cl-terminated Si(1 1 1) or H:Si(1 1 1) under ultraviolet light irradiation. The formation of Cl-terminated Si(1 1 1) and its resulting stability were examined prior to deposition of organic molecules. High-resolution electron energy loss spectroscopy (HREELS) was utilized for detecting surface-bound adsorbates. The detection of photo-deposited organic species on Cl:Si(1 1 1) from gas-phase CH4 or CH2CH2 was not significant. On H:Si(1 1 1), it was evident that after the photoreaction with gas-phase C2H5Cl, C2H5 groups were chemically bonded to the surface Si atoms through single covalent bonds. The C2H5 groups were thermally stable at temperatures below 600 K. Alkyl monolayers prepared on silicon surfaces by dry process will lead to a new prospective technology of nanoscale fabrication and biochemical applications.  相似文献   

15.
Well ordered V2O3(0 0 0 1) films were prepared on Au(1 1 1) and W(1 1 0) substrates. These films are terminated by a layer of vanadyl groups under typical UHV conditions. Reduction by electron bombardment may remove the oxygen atoms of the vanadyl layer, leading to a surface terminated by vanadium atoms. The interaction of oxygen with the reduced V2O3(0 0 0 1) surface has been studied in the temperature range from 80 to 610 K. Thermal desorption spectroscopy (TDS), infrared reflection absorption spectroscopy (IRAS), high resolution electron energy loss spectroscopy (HREELS), X-ray photoelectron spectroscopy (XPS), and density functional theory (DFT) were used to study the adsorbed oxygen species. Low temperature adsorption of oxygen on reduced V2O3(0 0 0 1) occurs both dissociatively and molecularly. At 90 K a negatively charged molecular oxygen species is observed. Upon annealing the adsorbed oxygen species dissociates, re-oxidizing the reduced surface by the formation of vanadyl species. Density functional theory was employed to calculate the structure and the vibrational frequencies of the O2 species on the surface. Using both cluster and periodic models, the surface species could be identified as η2-peroxo () lying flat on surface, bonded to the surface vanadium atoms. Although the O-O vibrational normal mode involves motions almost parallel to the surface, it can be detected by infrared spectroscopy because it is connected with a change of the dipole moment perpendicular to the surface.  相似文献   

16.
Supersonic molecular beam technique combined with high resolution X-ray photoelectron spectroscopy using synchrotron radiation was applied to the study of the dynamics of dissociative adsorption of oxygen on Ru(0 0 0 1) surface in high coverage region. The Ru(0 0 0 1) surface pre-covered with oxygen atoms of 0.5 monolayer, which corresponds to the p(2 × 1)-O structure, was dosed to oxygen molecules with translational energy of 0.5 eV. Oxygen uptake was compared between the cases with and without the beam source heated in order to verify the effects of internal energy of oxygen. We found drastic enhancement in initial sticking probability of oxygen when the beam source was heated to 1400 K. We concluded that the enhancement of sticking probability is mainly caused by molecular vibrational excitation, indicating that dissociation barrier is located in the exit channel on potential energy surface.  相似文献   

17.
The subband dispersions in the Si(1 1 1) p-type inversion layers induced by Pb and Ga adsorbed surface structures were measured by angle-resolved photoemission spectroscopy (ARPES). The surface structures used here were and Si(1 1 1)6.3 × 6.3-Ga. is a new surface phase found in this study. Because it is significant in our study to investigate potential effects of surface superstructures on the hole subband dispersion, we investigated the subband energy levels quantitatively comparing them with those calculated using the triangular approximation. It was found that the energy separation of the adjacent subband quantum levels in the inversion layers induced by gallium adsorption does not follow the triangular approximation. The possible band bending shape was proposed to explain the quantum level spacing of the subbands in Ga-induced inversion layers.  相似文献   

18.
The adsorption of atomic Se on a Fe(1 1 0) surface is examined using the density functional theory (DFT). Selenium is adsorbed in high-symmetry adsorption sites: the -short and long-bridge, and atop sites at 1/2, 1/4, and 1 monolayer (ML) coverages. The long bridge (LB) site is found to be the most stable, followed by the short bridge (SB) and top sites (T). The following overlayer structures were examined, p(2 × 2), c(2 × 2), and p(1 × 1), which correspond to 1/4 ML, 1/2 ML, and 1 ML respectively. Adsorption energy is −5.23 eV at 1/4 ML. Se adsorption results in surface reconstruction, being more extensive for adsorption in the long bridge site at 1/2 ML, with vertical displacements between +8.63 and −6.69% -with regard to the original Fe position-, affecting the 1st and 2nd neighbours. The largest displacement in x or y-directions was determined to be 0.011, 0.030, and 0.021 Å for atop and bridge sites. Comparisons between Se-adsorbed and pure Fe surfaces revealed reductions in the magnetic moments of surface-layer Fe atoms in the vicinity of the Se. At the long bridge site, the presence of Se causes a decrease in the surface Fe d-orbital density of states between 4 and 5 eV below Fermi level. The density of states present a contribution of Se states at −3.1 eV and −12.9 eV. stabilized after adsorption. The Fe-Fe overlap population decrease and a Fe-Se bond are formed at the expense of the metallic bond.  相似文献   

19.
An initial oxidation dynamics of 4H-SiC(0 0 0 1)-(√3 × √3)R30° surface has been studied using high resolution X-ray photoelectron spectroscopy and supersonic molecular beams. Clean 4H-SiC(0 0 0 1)-(√3 × √3)R30° surface was exposed to oxygen molecules with translational energy of 0.5 eV at 300 K. In the first step of initial oxidation, oxygen molecules are immediately dissociated and atomic oxygens are inserted into Si-Si back bonds to form stable oxide species. At this stage, drastic increase in growth rate of stable oxide species by heating molecular beam source to 1400 K was found. We concluded that this increase in growth rate of stable oxide is mainly caused by molecular vibrational excitation. It suggests that the dissociation barrier is located in the exit channel on potential energy hypersurface. A metastable molecular oxygen species was found to be adsorbed on a Si-adatom that has two oxygen atoms inserted into the back bonds. The adsorption of the metastable species is neither enhanced nor suppressed by molecular vibrational excitation.  相似文献   

20.
In this work we have performed total-energy calculations on the geometric structure and adsorption properties of Cu(1 0 0) c(2 × 2)/N surface by using the density-functional theory and the projector-augmented wave method. It is concluded that nitrogen atom was adsorbed on a FFH site with a vertical distance of 0.2 Å towards from surface Cu layer. The bond length of the shortest Cu-N bonding is calculated to be 1.83 Å. Geometry optimization calculations exclude out the possibilities of adsorbate induced reconstruction mode suggested by Driver and Woodruff and the atop structural model. The calculated workfunction for this absorbate-adsorbent system is 4.63 eV which is quite close to that of a clean Cu(1 0 0) surface. The total-energy calculations showed that the average adsorption energy per nitrogen in the case of Cu(1 0 0) c(2 × 2)-N is about 4.88 eV with respect to an isolated N atom. The absorption of nitrogen on Cu(1 0 0) surface yields the hybridization between surface Cu atoms and N, and generates the localized surface states at −1.0 eV relative to Fermi energy EF. The stretch mode of the adsorbed nitrogen at FFH site is about 30.8 meV. The present study provides a strong criterion to account for the local surface geometry in Cu(1 0 0) c(2 × 2)/N surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号