首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
This study explores reactive processing aimed at improving the mechanical properties of polyolefin/inorganic particulate filler based composites. Three different polymer matrix materials have been studied in combination with the nine inorganic particulate fillers with different particle size and of varying pH. The reactive modifier 1,3‐phenylene dimaleimide (BMI) has been shown in all cases to be very effective in terms of improving composite properties beyond those of the respective unmodified composites and in some cases beyond those of the unfilled matrix materials. The detrimental effect of BMI on melt viscosity can be overcome via judicious use of a suitable lubricant, and together with response surface methods, followed by optimization procedures, composite properties can be tailored for specific end use applications.  相似文献   

2.
Inserting polymers into a crystalline inorganic matrix to understand the structure, position, and the structure–property relationships of the resulting composites is important for designing new inorganic‐organic materials and tuning their properties. Single crystals of polymer‐chalcogenide composites were successfully prepared by trapping polyethyleneglycol within a selenidostannate matrix under surfactant‐thermal conditions. This work might provide a new strategy for preparing novel crystalline polymer‐inorganic composites through encapsulating polymer chains within inorganic matrices.  相似文献   

3.
Hybrid organic–inorganic polymer nanocomposites incorporating polyhedral oligomeric silsesquioxane (POSS) nanoparticles are of increasing interest for high performance materials applications. Octaisobutyl POSS/polypropylene nanocomposites were prepared at varying POSS concentrations via melt blending. The interplay of POSS molecular geometry, composition, and concentration in relation to the tribological, nanomechanical, surface energy, and bulk properties of the nanocomposites were investigated. Ultra‐low friction and enhanced hardness, modulus, and hydrophobicity were observed for the nanocomposite surfaces, with minimal changes in the bulk thermomechanical properties. Parallel AFM, SEM, TEM, and spectroscopic analyses demonstrated significant differences in POSS distribution and aggregation in the surface and the bulk, with preferential segregation of POSS to the surface. Additionally, contact angle studies reveal significant reduction in surface energy and increase in hysteresis with incorporation of POSS nanoparticles. The differences in bulk and surface properties are largely explained by the gradient concentration of POSS in the polymer matrix, driven by POSS/POSS and POSS/polymer interactions. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2441–2455, 2007  相似文献   

4.
Functional inorganic nanofillers for transparent polymers   总被引:6,自引:0,他引:6  
The integration of inorganic nanoparticles into polymers has been used for the functionalization of polymer materials with great success. Whereas in traditional polymer composites, micron sized particles or agglomerates typically cause significant light scattering hampering optical applications, in nanocomposites the particle dimensions are small enough for the production of highly transparent composites. A challenge for the generation of such materials is to develop an integrated synthesis strategy adapting particle generation, surface modification and integration inside the polymer. Surface grafting using polymerizable surfactants or capping agents allows for linking the particles to the polymer. Novel techniques such as in situ polymerization and in situ particle processing are beneficial to avoid aggregation of inorganic particles inside the polymer matrix. The functions associated with inorganic fillers are widespread. Layered silicates and related materials are nowadays commercially available for improving mechanical and barrier properties in packaging. With the availability of highly transparent materials, the focus has shifted towards optical functions such as luminescence and UV-protection in transparent polymers. IR-active fillers are used in laser-holography for transparent poly(methyl methacrylate) (PMMA) nanocomposites. Refractive index modulation and ultrahigh refractive index films were developed based on inorganic materials such as PbS. The integration of magnetic nanoparticles has a great potential for applications such as electromagnetic interference shielding and magneto-optical storage.This tutorial review will summarize functions associated with the integration of inorganic nanofillers in polymers with a focus on optical properties.  相似文献   

5.
The mechanical properties of polymer composites, reinforced with silica-coated multiwall carbon nanotubes (MWNTs), have been studied using the nanoindentation technique. The hardness and the Young's modulus have been found to increase strongly with the increasing content of these nanotubes in the polymer matrix. Similar experiments conducted on thin films containing MWNTs, but without a silica shell, revealed that the presence of these nanotubes does not affect the nanomechanical properties of the composites. While carbon nanotubes (CNTs) have a very high tensile strength due to the nanotube stiffness, composites fabricated with CNTs may exhibit inferior toughness. The silica shell on the surface of a nanotube enhances its stiffness and rigidity. Our composites, at 4 wt % of the silica-coated MWNTs, display a maximum hardness of 120 +/- 20 MPa, and a Young's modulus of 9 +/- 1 GPa. These are respectively 2 and 3 times higher than those for the polymeric matrix. Here, we describe a method for the silica coating of MWNTs. This is a simple and efficient technique, adaptable to large-scale production, and might lead to new advanced polymer based materials, with very high axial and bending strength.  相似文献   

6.
Thermogravimetry was used to investigate the effects of different inorganic functional fillers on the heat resistance of polymer matrices. The kinetic parameters of thermal oxidative degradation were shown to depend on the polymer, the chemical composition of the filler surface, the filler concentration, and the processing method, which determines the distribution of filler particles in the polymer matrix. Magnetic fillers (carbonyl iron, and hexaferrites of different structural types) were shown to be chemically active fillers, increasing the heat resistance of siliconorganic polymers. Their stabilizing effect is due to blocking of the end silanol groups and macroradicals by the surface of the filler and non-chain inhibition of thermal oxidative degradation. In the case of fiber-forming polymers (UHMWPE, PVOH and PAN), most magnetic fillers are chemically inert, but at concentrations of 30–50 vol% they increase the heat resistance of the composite. Addition of carbon black increased the heat resistance of the thermoplastic matrix. The dependence of the thermal degradation onset temperature on the kaolin concentration in the polyolefin matrix exhibited a maximum. Analysis of the experimental results demonstrated the operating temperature ranges for different composites, and their maximum operating temperature. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
8.
Quasi-static nanoindentation has been used to characterize the mechanical properties of polycarbonate reinforced with graphite nanoplatelets (GNPs). Poor dispersion or low quality interfacial interactions of GNPs in a polymer matrix can significantly decrease the relative improvement in the material's mechanical strength and stiffness. In this study, the surfaces of GNPs were modified to achieve better dispersion and interfacial interaction between fillers and matrix. The GNP/PC nanocomposite has a heterogeneous microstructure, and the original mechanical properties between filler and matrix have large differences. Using a spatially sensitive probe method leads to measured values of modulus and hardness that correlate with the indentation sampled volume. A grid indentation procedure was performed with variable sampling volumes to provide a statistical measurement of modulus and hardness for the nanocomposite materials. The surface treatment leads to a significant increase in both stiffness and hardness for GNP reinforced composites.  相似文献   

9.
Facile and smart method for the modification of inorganic fibers has been developed. The polyaniline was synthesized on basalt fiber surface presenting an organic polymer shell to the inorganic fibers. The modified basalt fibers were dispersed in rubber-producing well-dispersed rubber composites. Various mass loadings of modified basalt fibers were dispersed and optimized. The effect of radiation on the properties of developed rubber composites was investigated by exposure to different gamma radiation doses. The flammability, thermal and mechanical properties were studied. The flammability of developed composites was improved achieving 62 and 16% reduction in the peak heat release rate compared to blank rubber and unmodified basalt fiber-based rubber composite, respectively. This is in addition to significant reduction in emission of CO and CO2 gases by 65 and 58%, respectively. Also, the tensile strength property was enhanced by 38 and 53% compared to blank and unmodified basalt composite, respectively. The role of polyaniline layer on inorganic fiber surface and their effect on the properties of the produced composites was studied. The organic polymer shell achieved good compatibility and interfacial adhesion of basalt fibers with rubber matrix and radiation protection effect for the developed composites.  相似文献   

10.
Organic-inorganic polymer composites, consisting of a polyurethane organic phase and a mineral inorganic phase were prepared by the joint polymerization of the urethane oligomer with the water solution sodium silicate. The structure and the morphology of the composites, at a fixed weight fraction of the inorganic component of 20%, and of the corresponding pure polyurethane matrices were investigated by wide-angle and small-angle X-ray scattering (WAXS and SAXS, respectively). The results show similar size (5-7 nm) of the scale of heterogeneity of the composites due to the microphase separation of the rigid and the flexible blocks of the amorphous polyurethane matrix and due to the inorganic crystalline inclusions, i.e. the materials prepared are nanocomposites. The WAXS measurements indicate that the individual properties of the block inorganic component are lost in the nanocomposites, probably due to physical and chemical interactions between the two components. Water sorption from the liquid phase was studied gravimetrically in a composite and in the corresponding polyurethane. The results show high sorption capacity of the composite, due to the hydrophilicity of the inorganic phase and the elasticity of the polyurethane matrix, and allow to estimate the layer thickness of water adsorbed on the inorganic nanoparticle surface to about 20 nm, in reasonable agreement with a model adopted from the literature. WAXS and SAXS measurements on the swelled composite and the swelled-and-dried composite indicate changes in the structure of the inorganic component induced by water, which are, however, to a large extent reversible. These materials may find applications as gel electrolytes and as hydrogels in drug delivery systems.  相似文献   

11.
Upon transmission of visible light through composites comprising of a transparent polymer matrix with embedded particles, the intensity loss by scattering is substantially reduced for particle diameters below 50–100 nm (nanoparticles, nanosized particles). As a consequence, related materials (nanocomposites) have found particular interest in optical studies. The first part of this article deals with a historical survey on nanoparticles and nanocomposites and the importance of small particle sizes on their optical properties. The second part focuses on results from our laboratory concerning nanocomposites with extremely high or low refractive indices and dichroic nanocomposites and their application in bicolored liquid crystal displays (LCD). The inorganic colloids required for these studies (lead sulfide, iron sulfides, gold, and silver) were prepared in situ in presence of a polymer or isolated as redispersable metal colloids modified at the surface with a self‐assembled monolayer (SAM) of an alkanethiol. The nanocomposites themselves were finally obtained by coprecipitation, spin coating, solvent casting or melt extrusion, with poly(ethylene oxide), gelatin, poly(vinyl alcohol) and polyethylene as matrix polymers.  相似文献   

12.
《先进技术聚合物》2018,29(6):1568-1585
Ever since the discovery of polymer composites, its potential has been anticipated for numerous applications in various fields such as microelectronics, automobiles, and industrial applications. In this paper, we review filler reinforced polymer composites for its enormous potential in microelectronic applications. The interface and compatibility between matrix and filler have a significant role in property alteration of a polymer nanocomposites. Ceramic reinforced polymeric nanocomposites are promising candidate dielectric materials for several micro‐ and nano‐electronic devices. Because of its synergistic effect like high thermal conductivity, low thermal expansion, and dielectric constant of ceramic fillers with the polymer matrix, the resultant nanocomposites have high dielectric breakdown strength. The thermal and dielectric properties are discussed in the view of filler alignment techniques and its effect on the composites. Furthermore, the effect of various surface modified filler materials in polymer matrix, concepts of network forming using filler, and benefits of filler alignment are also discussed in this work. As a whole, this review article addresses the overall view to novice researchers on various properties such as thermal and dielectric properties of polymer matrix composites and direction for future research to be carried out.  相似文献   

13.
This review highlights the recent progress made in the area of thermoelectric (TE) applications of conducting polymers and related composites. Several examples of such materials and their TE properties are discussed. TE properties of new poly(2,7‐carbazole) derivatives are highlighted. References are also made to carbon nanotube/polymer composites and their improved electrical and TE performance. Studies on polymer/inorganic materials composites have also taken a step forward and have shown very promising TE properties. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

14.
Multilayered self-reinforced composites were developed from a density-separated light fraction of automotive shredder waste of high polyolefin content, which can fulfil the current technical, safety and environmental requirements of structural materials. The significantly enhanced mechanical properties of the recycled composites were ensured by polypropylene fabric reinforcement; meanwhile, reduced flammability was obtained by modifying the matrix layers, made of secondary raw materials, with phosphorous-containing flame retardant additive. The results of the new flame retarded composite systems allowed the discussion of a novel mechanistic observation. The mechanical and flammability properties of the prepared self-reinforced composites are compared to conventional glass fabric reinforced composites and to compounds without reinforcement.  相似文献   

15.
导电高分子纳米复合材料   总被引:5,自引:1,他引:5  
导电高分子纳米复合材料是纳米材料研究中一个重要部分。着重综述了导电高分子无机纳米复合材料在合成技术、材料性质和各领域中应用的最新研究进展。  相似文献   

16.
聚烯烃功能化改性是获得高性价比新材料的有效途径。含硅功能化聚烯烃(SFPO)是聚烯烃分子结构中含有机硅功能基团或有机硅聚合物链段的一类功能化聚烯烃的统称。由于有机硅功能基团及有机硅聚合物特殊的理化性质,SFPO通常具有丰富反应性或优异性能,成为一类有代表性的功能化聚烯烃。SFPO可以作为反应性中间体,用于制备具有复杂拓扑结构的功能化聚烯烃(如星型聚合物、梳型聚合物、接枝共聚物)或聚烯烃共价键接枝改性纳米材料;SFPO还可作为功能性添加剂(如增容剂、加工助剂,表面改性剂),用于开发聚烯烃新材料。近年来,研究人员在含硅功能化聚烯烃研究领域取得了系列进展,本文旨在对相关工作进行系统总结,以期引起同行注意并促进相关研究深入发展。  相似文献   

17.
Oriented structure, mainly controlled by processing conditions, is another efficient method of reinforcing polymer materials in addition to compounding with rigid inorganic fillers such as carbon nanotubes (CNTs). The mechanical properties of oriented polypropylene (PP)/multiwalled CNT (MWCNT) composites, which are vital to their application fields, are investigated extensively in this paper, with an aim to distinguish the contribution of MWCNTs contents from that of the oriented structure to the final performance of the composite. The results indicate that MWCNTs mainly increase the modulus of the composites by approximately 140%. The oriented structure formed during the die-drawing process contributes more to the enhancement of tensile strength, increasing up to 550%. The modulus and tensile strength can be further improved by increasing the drawing speed. Moreover, the tensile stress field in the die-drawing process can vastly improve the dispersion of the MWCNTs in the matrix, thus providing a new idea for improving the dispersion of nanofillers in the polymer matrix.  相似文献   

18.
The principles of the creation of new blend polyolefin elastomers with a controlled complex of properties based on a stereoblock elastomeric PP synthesized in the presence of asymmetric ansa-metallocenes are proposed. Original blend polymer materials with reduced hardness that are based on elastomeric PPs with different characteristics and a 50–70 wt % oil-extended ternary ethylene-propylene-diene elastomer were prepared through the method of dynamic vulcanization. The molecular-mass characteristics of PP have a considerable effect on the rheological properties of polyolefin elastomers. For successful processing of the resulting blends, the pristine component, the elastomeric PP, must have a weight-average molecular mass of M w = (8?14) × 104 and a low crystallinity.  相似文献   

19.
Composite materials, made by replacing traditional materials, are used because of their capability to produce tailor-made, desirable properties such as high tensile strength, low thermal expansion, and high strength to weight ratio. The need for the development of new materials is essential and growing day by day. The natural sisal/general polymer (GP) reinforced with nanoclay composites has become more attractive due to its high specific strength, light weight, and biodegradability. In this study, sisal–nanoclay composite is developed and its mechanical properties such as tensile strength, flexural strength, and impact strength are evaluated. The interfacial properties, internal cracks, and internal structure of the fractured surface are evaluated using scanning electron microscope. The thermal disintegration of composites are evaluated by thermogravimetric analysis. The results indicate that the incorporation of nanoclay in sisal fiber/GP can improve its properties and can be used as a substitute material for glass fiber-reinforced polymer composites.  相似文献   

20.
Fluoroaramids have been used as an attractive matrix polymer for composites due to their excellent mechanical and surface properties. Properties of these polymers can be improved further by dispersing silica in these matrices at a nano-scale via the sol–gel process. The role of interfacial interaction on the thermal and mechanical properties in such hybrids has been investigated in the present work. Two types of hybrids have been prepared; one using the aramid matrix with pendant alkoxy groups on the chain and other without. Silica network was developed by addition of tetraethoxysilane and its subsequent hydrolysis and condensation in the polymer matrix. Well dispersed inorganic domains of nanometer scale were obtained in case of matrix with pendant alkoxy groups on the chain, which showed larger increase in the α- and β-relaxation temperatures, storage modulus and thermal stability as compared to the matrix without alkoxy groups. The role of interfacial interaction, and its effect on properties on the fluoroaramid-silica hybrid composites has been discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号