共查询到20条相似文献,搜索用时 15 毫秒
1.
O. A. Platonova L. M. Bronstein S. P. Solodovnikov I. M. Yanovskaya E. S. Obolonkova P. M. Valetsky E. Wenz M. Antonietti 《Colloid and polymer science》1997,275(5):426-431
The preparation and properties of Co nanoparticles in polystyrene(PS)-poly-4-vinyl-py-ridine(PVP) micelles were studied.
Elementary Co was generated by two methods: (i) by reduction of micelles loaded with CoCl2, and (ii) by thermal decomposition of Co2(CO)8 in micel-lar solutions of such block copolymers. Co particles formed by both processes are effectively stabilized by the
block copolymer matrix and do not aggregate. For CoCl2 as a Co-source, the formed particles have a size less than 1 nm. Thermal treatment of such dried polymers at 200 °C for 2 h leads to spherical particles of 3–5 nm in size. The polymeric hybrid materials prepared in this way display remarkably
high values of magnetization at rather low Co contents in the polymer, i.e., we obtain a tenfold increase of the specific
magnetization density. Co2(CO)8 as a Co source, results in a more complex behavior. Co2(CO)8 dissolves in the solvent as well as in the micelle core where it is converted to an cationic–anionic complex involving the
4-VP units. The shape and size of the Co nanoparticles formed by thermolysis can be controlled by the balance of 4-VP/Co and
can be varied from spherical particles in the limit of lower Co loads being mainly attached to the micelle core to a star-like
and cubic morphology in case of excess of Co2(CO)8. Both superparamagnetic and ferromagnetic materials can be prepared. For ferromagnetic samples coercive force varies from
250 to 475 Oe depending on Co content and polymer sample.
Received : 27 September 1996 Accepted: 22 November 1996 相似文献
2.
Noninvasive ultrasound is more convenient and easily accessible for controlled drug delivery of polymeric nanoparticles than many other stimuli.However,controlled ultrasound responsiveness is rather challenging as the mechanism is still unclear.In this article,we disclose the origin and the key regulating factors of ultrasound responsiveness of block copolymer nanoparticles such as simple vesicles,framboidal vesicles,lamellae,beads-like micelles and complex micelles that are self-assembled from a range of poly(ethylene oxide)-b-polymethacrylates based model copolymers.We discover that the intrinsic ultrasound responsiveness of block copolymer nanoparticles thermodynamically originates from their metastable states,and its expression kinetically relates to the mobility of the hydrophobic segments of block copolymers.Specifically,the self-assembly temperature(Ts) that has been usually considered as a less important factor in most of macromolecular self-assembly systems,and the solvents for the selfassembly are two dominant regulating factors of the ultrasound responsiveness because they determine the thermodynamic state(metastable or stable) of nanoparticles.For example,simple vesicles with good or excellent ultrasound responsiveness can be prepared in THF/water when the Tsis around or slightly below the glass transition temperature(Tg) of the hydrophobic segment of the block copolymer because the combination of this solvent with this Tsfacilitates the formation of metastable vesicles.By contrast,thermodynamically stable solid nanoparticles such as spherical micelles and lamellae(mainly formed in DMF/water)are not sensitive to ultrasound at all,neither are the vesicles in THF/water at stable states when the Tsis highly above Tg.In addition,we unravel that the responsive rate is highly dependent on the sonication temperature(Tu),i.e.,the higher the Tu,the faster the rate.Overall,the above important findings provide us with a fresh insight into how to design ultrasound-responsive nanoparticles and may open new avenues for synthesizing translational noninvasively responsive drug carriers. 相似文献
3.
The present paper relates to the atomized process for the synthesis of nanoparticles of polystyrene (nPS), polyacrylonitrile (nPAN), and poly(styrene/acrylonitrile) (nP[SAN]) copolymers with different monomer ratios and with controlled particle size in the range from 10 to 100 nm. In this process, ammonium persulfate (APS) was used as thermal initiator, along with sodium dodecyl sulfate (SDS) and n‐pentanol (n‐Pt) as surfactant and cosurfactant, respectively. The effect of different parameters on particle size and morphology of polymer nanoparticles has been reported in this work. Transmission electron microscopy (TEM) study showed the changes in particle morphology of pure nPS, nPAN, and their copolymers. Structural property and interaction of PS and PAN were investigated by Fourier transform infrared (FTIR) spectroscopy and X‐ray diffraction (XRD). The effect of particle size and crystalline structure on glass transition temperature (Tg) and melting temperature (Tm) were also investigated by differential scanning calorimetry (DSC). Thermal stability of polymer nanoparticles was studied by thermo gravimetric analyzer (TGA) and it showed that the copolymer nanoparticles of nP[SAN] were more stable with minimum weight loss (WL). Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
4.
5.
采用一罐纳米乳液法,以聚乙二醇-聚丙二醇-聚乙二醇(PEO-PPO-PEO)三嵌段共聚物为表面活性剂,通过还原前驱体乙酰丙酮镍、乙酰丙酮铁(Ⅱ)和醋酸金,成功制备了NiFeAu纳米粒子.采用透射电镜和X射线衍射仪分析了NiFeAu纳米粒子的形貌和结构;采用傅立叶变换红外光谱仪分析了三嵌段共聚物在NiFeAu纳米颗粒表面的覆盖情况;采用紫外-可见吸收光谱仪和振动样品磁强计测试了纳米粒子的光学和磁学特性.结果表明,三嵌段共聚物成功地结合于NiFeAu纳米颗粒表面;所制备的纳米粒子粒径分布较窄、结晶性能良好,并兼具光学和磁学特性. 相似文献
6.
7.
Moon Jeong Park Jongnam Park Taeghwan Hyeon Kookheon Char 《Journal of polymer science. Part A, Polymer chemistry》2006,44(24):3571-3579
We investigated the effect of hard additives, that is, magnetic nanoparticles (NPs) and metal NPs, on the ordered morphology of block copolymers by varying the NP concentration. To characterize the structural changes of a block copolymer associated with different NP loadings, small-angle X-ray scattering and transmission electron microscopy were performed. Monodisperse maghemite (γ-Fe2O3) NPs (7 nm in diameter) and silver (Ag) NPs (6 nm in diameter) with surfaces modified with oleic acids were synthesized, and a cylinder-forming poly(styrene-block-isoprene) diblock copolymer was used as a structure-directing matrix for the NPs. As the NP concentration increased, domains of NP aggregates were observed for both magnetic and metal NPs. In the case of mixtures of cylinder-forming poly(styrene-block-isoprene) and Ag NPs with weak particle–particle interactions, random aggregates of Ag NPs were observed, and the ordered morphology of the block copolymer lost its long-range order with an increase in the NP concentration. However, regular, latticelike aggregates obtained with γ-Fe2O3 NPs, because of the strong interparticle interactions, induced an intriguing morphological transformation from hexagonal cylinders to body-centered-cubic spheres via undulated cylinders, whereas the neat block copolymer did not show such a morphological transition over a wide range of temperatures. The interplay between magnetic NPs and the block copolymer was also tested with magnetic NPs of different sizes. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3571–3579, 2006 相似文献
8.
Guangbin Yang Zhanming Zhang Shengmao Zhang Laigui Yu Pingyu Zhang Yanchao Hou 《Surface and interface analysis : SIA》2013,45(11-12):1695-1701
Cu nanoparticles surface‐capped by alkanethiols were synthesized using ligand exchange method in a two‐phase system. The effects of synthetic conditions, including the pH value of CuSO4 solution, the ratio of cetyltrimethyl ammonium bromide to CuSO4, and reaction temperature, on the size and shape of as‐synthesized Cu nanoparticles were investigated. As‐synthesized Cu nanoparticles surface‐capped by alkanethiols with different chain lengths (CxS‐Cu) were characterized by means of X‐ray diffraction, transmission electron microscopy, Fourier transform infrared spectrometry, and ultraviolet–visible light spectrometry. The tribological behavior of CxS‐Cu as an additive in liquid paraffin was evaluated with a four‐ball machine. Results indicate that cetyltrimethyl ammonium bromide plays an important role in controlling the dispersion of Cu nanoparticles before adding modifier octanethiol into the reaction solution. CxS‐Cu nanoparticles as additive in liquid paraffin possess excellent antiwear and friction‐reduction performance because of the deposition of nano‐Cu with low melting point on worn steel surface leading to the formation of a self‐repairing protective layer thereon. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
9.
Alvaro Carrillo Mallinamadugu J. Yanjarappa Kunal V. Gujraty Ravi S. Kane 《Journal of polymer science. Part A, Polymer chemistry》2006,44(2):928-939
We present an approach to the synthesis of biofunctionalized block copolymer nanoparticles based on ring‐opening metathesis polymerization; these nanoparticles may serve as novel scaffolds for the multivalent display of ligands. The nanoparticles are formed by the self‐assembly of diblock copolymers composed of a hydrophobic block and a hydrophilic activated block that can be functionalized with thiolated ligands in aqueous media. The activated block enables control over the orientation of the displayed ligands, which may be sugars, peptides, or proteins engineered to contain cysteine residues at suitable locations. The nanoparticle diameter can be varied over a wide range through changes in the composition of the block copolymer, and biofunctionalization of the nanoparticles has been demonstrated by the attachment of a peptide previously shown to inhibit the assembly of anthrax toxin. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 928–939, 2006 相似文献
10.
以溴代异丁酰溴与3,5-二羟基苯甲酸制备3,5-二(2-溴-2丙酰氧基)苯甲酸,再与聚乙二醇单甲醚酯化,合成含溴大分子引发剂PEG-Br2。以苯乙烯为单体,利用原子转移自由基聚合方法(ATRP)合成了两种不同亲疏水段比例的两亲性星型杂臂嵌段共聚物PEG-b-(PS)2。本实验利用FTIR、1H-NMR、GPC等技术对聚合物的分子结构及分子量进行表征,利用透析法制备聚合物胶束;采用AFM对聚合物胶束的纳米结构进行观察;采用荧光探针法测得其临界胶束浓度(CMC)分别为0.99 mg·L-1和0.59 mg·L-1;利用DLS测得聚合物胶束粒径为150 nm左右;以疏水型抗肿瘤药物氨甲喋呤(MTX)为模型药物,对载药胶束的体外释药行为进行了研究,测得聚合物胶束的载药量分别为为13.32%和10.00%,包封率分别为61.75%和46.82%。结果表明,随着疏水段的增大,星型杂臂嵌段共聚物胶束药物包载量及CMC随之降低,且在人体pH条件下药物释放较低;同时发现两种载药胶束在肿瘤细胞酸性条件下释药速率增加。综上,此类结构的聚合物胶束作为抗肿瘤药物MTX的载体分子具有很好的应用前景。 相似文献
11.
Hung-Sung Lin Yan Wu Yu-Ju Liu Shu-Hui Chen Wei-Ting Chen Shao-Pin Wang 《中国化学会会志》2020,67(11):2149-2152
The higher anti-human immunodeficiency virus activity of a symmetrical 2,2′-disubstitued derivative of diphenyl disulfide (DPDS) has been explained by the lower energy of the lowest unoccupied molecular orbital (LUMO), resulted from a better hydrogen bond stabilization of the σ*SS bond orbital (BO). This conclusion entails the participation of σ*SS BO in constructing the LUMO. The higher content of σ*SS BO, compared to π*CC BOs of phenyl groups, in LUMO of DPDS has been found through analysis of the LUMO of DPDS expanded in the BO space. The high content of σ*SS BO (%σ*SS) in the LUMO of DPDS has laid the foundation for the formation of σ-type radical anion intermediate in the stepwise reductive cleavage of disulfide bond in the symmetrical 4,4′-disubstitued DPDS derivatives. For the nine 4,4′-disubstituted DPDS-derivatives under reductive cleavage studies, the increasing %σ*SS in the LUMOs is parallel to the increasing value of inner reorganization energy. 相似文献
12.
Kozo Matsumoto Junichi Nakashita Hideki Matsuoka 《Journal of polymer science. Part A, Polymer chemistry》2006,44(15):4696-4707
Diblock copolymer poly(1,1,3,N,N′‐pentamethyl‐3‐vinylcyclodisilazane)‐block‐polystyrene (polyVSA‐b‐polySt) and triblock copolymer poly(1,1,3,N,N′‐pentamethyl‐3‐vinylcyclodisilazane)‐block‐polystyrene‐block‐poly(1,1,3,N,N′‐pentamethyl‐3‐vinylcyclodisilazane) (polyVSA‐b‐polySt‐b‐polyVSA), consisting of silazane and nonsilazane segments, were prepared by the living anionic polymerization of 1,1,3,N,N′‐pentamethyl‐3‐vinylcyclodisilazane and styrene. PolyVSA‐b‐polySt formed micelles having a poly(1,1,3,N,N′‐pentamethyl‐3‐vinylcyclodisilazane) (polyVSA) core in N,N‐dimethylformamide, whereas polyVSA‐b‐polySt and polyVSA‐b‐polySt‐b‐polyVSA formed micelles having a polyVSA shell in n‐heptane. The micelles with a polyVSA core were core‐crosslinked by UV irradiation in the presence of diethoxyacetophenone as a photosensitizer, and the micelles with a polyVSA shell were shell‐crosslinked by UV irradiation in the presence of diethoxyacetophenone and 1,6‐hexanedithiol. These crosslinked micelles were pyrolyzed at 600 °C in N2 to give spherical ceramic particles. The pyrolysis process was examined by thermogravimetry and thermogravimetry/mass spectrometry. The morphologies of the particles were analyzed by atomic force microscopy and transmission electron microscopy. The chemical composition of the pyrolysis products was analyzed by X‐ray fluorescence spectroscopy and Raman scattering spectroscopy. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4696–4707, 2006 相似文献
13.
14.
Mureo Kaku Lisa C. Grimminger Dotsevi Y. Sogah Sharon I. Haynie 《Journal of polymer science. Part A, Polymer chemistry》1994,32(11):2187-2192
We have prepared an amphiphilic oxazoline block copolymer of hydrophilic poly(2-methyl-2-oxazoline) and hydrophobic poly[2-(2-perfluorooctyl)ethyl-2-oxazoline] chains. By controlling the length and composition of polymer chains, we found that this fluorinated block copolymer can be readily dissolved in water. Furthermore, we can achieve a stable surface coating of the fluorinated block copolymer by dissolving the copolymer in water, then coating the aqueous copolymer solution onto surfaces of nonwater-soluble polymers. This is a simple and useful method of modifying the surface character of polymer substrates. We have found that the polyether urethane (PEU) coated by block copolymer has a different surface chemistry and biological reactivity than the uncoated PEU. From XPS analysis, we found the fluorinated copolymer was coated on PEU (atomic % of F: 31.3 on coated PEU, 0.3 on uncoated). The two surfaces have different affinities for biological molecules. Specifically, the fibrinogen adsorption on the fluorinated copolymer-coated PEU was 62 ± 39 ng/cm2, compared to a value of 156 ± 99 ng/cm2 for uncoated PEU. In an ex vivo evaluation of platelet adhesion, the surface of coated PEU attached a few white cells while uncoated PEU was covered with activated platelets. © 1994 John Wiley & Sons, Inc. 相似文献
15.
J. J. Müller G. Lukowski R. Kröber G. Damaschun M. Dittgen 《Colloid and polymer science》1994,272(7):755-769
Nanoparticles are possible carriers for drug delivery. Copolymer nanoparticles of acrylic acid, acrylic amide, acrylic butylester, and methacrylic methylester (CAA) dispersed in water and in 0.15 M NaCl-solution were investigated by small-angle x-ray scattering (SAXS) experiments. The particles were characterized in terms of parameters relevant for the in vivo distribution: particle shape and diameter, size distribution, surface structure, and their organization within tight systems.The CAA-nanoparticles exist in at least three populations of spheres with two minor subpopulations having radii of about 32 and 66 nm and the main moiety around 45 nm. The degree of polydispersity isR
w/R
N=1.05. The subpopulations possess different hydrophobic areas on their surfaces, leading to different recognition by opsonins in vivo and different organ distribution and clearance velocity. The particles are compact without channels and holes, which is proved by low internal hydrationw=0.22 g H2O/g polymer. Drugs and coating surfactants will interact mainly with the outer surface and not tunnel into the carriers. The surface of the nanoparticles is fractal with a dimensionD=2.3. Probe-molecules with dimensions less than 11.4 nm in diameter will find a larger contact area than expected from the sphere radius. Adsorption rate and position of the arrival of surfactants, and possibly opsonins, may be affected thereby. The negative charges on the CAA-nanoparticle surface are nearly completely screened in physiological NaCl-solutions by counter-ions. Therefore, surface charges hamper carrier-cell interaction at short distances only and do not prevent specific recognition and clearance by the reticuloendothelial system (RES). 相似文献
16.
Jingtian Han Patrick Silcock A. James McQuillan Phil Bremer 《Colloid and polymer science》2008,286(14-15):1605-1612
Block copolymers poly(styrene-alt-maleic anhydride)-b-polystyrene (P(St-alt-MAn)-b-PSt) were synthesized via radical addition fragmentation chain transfer copolymerization. The maleic anhydride-containing segments of the block copolymer were hydrolyzed to form amphiphilic poly(styrene-alt-maleic acid)-b-polystyrene (P(St-alt-MA)-b-PSt). In aqueous solution, P(St-alt-MA)73-b-PSt81 and P(St-alt-MA)58-b-PSt130 formed stable dispersed spherical aggregates of approximately 25 and 40 nm, respectively. Particle size was stable under alkaline conditions and was little affected by the polymer concentration in the range of 0.025–1.0 mg mL?1. The critical aggregation concentrations of the block copolymer self-aggregates were 1?×?10?3 and 3?×?10?3 mg mL?1 for hydrophobic PSt block lengths of 130 and 81 monomer units, respectively. The nanoparticles had a negative surface charge at pH?>?2. Scanning electron microscopy images revealed that particle–particle coalescence did not occur upon drying of the film and the nanoparticles remained discrete. Controlled aspirin release from the nanoparticles was dependent on the structure of the block polymers and release medium. 相似文献
17.
Lu J Yi SS Kopley T Qian C Liu J Gulari E 《The journal of physical chemistry. B》2006,110(13):6655-6660
We report the use of the block copolymer micelle approach to produce various transition metal nanoparticles such as iron, cobalt, and nickel with precisely controlled size and spacing. These uniformly sized catalyst nanoparticles derived from the block copolymer micelle approach have enabled the synthesis of carbon nanotubes (CNTs) with narrow size distribution. Because of the excellent film forming ability of the polymeric material, metal-bearing surface micelles produced from the solution micelles can be distributed uniformly on a surface, resulting in evenly dispersed catalyst nanoparticles. As a result, high quality and uniformly distributed CNTs have been synthesized. Spatially selective growth of CNTs from a lithographically patterned metal-bearing micelle film has been achieved. The polymer template approach can potentially be extended to synthesize single-metallic and bimetallic catalytically active nanoparticles with uniform size and spacing and is fully compatible with conventional lithographic process. Additionally, catalyst nanoparticles produced from this method do not coalesce at high growth temperature. All these attributes make this approach a promising fabrication pathway for controllable synthesis of CNTs. 相似文献
18.
Cai C Wang L Lin J Zhang X 《Langmuir : the ACS journal of surfaces and colloids》2012,28(9):4515-4524
Hybrid polymeric micelles self-assembled from a mixture containing poly(γ-benzyl-L-glutamate)-block-poly(ethylene glycol) (PBLG-b-PEG) block copolymer and gold nanoparticles (AuNPs) were prepared. The effect of AuNPs on the self-assembly behavior of PBLG-b-PEG was studied both experimentally by transmission electron microscopy, scanning electron microscopy, and laser light scattering and computationally using dissipative particle dynamics (DPD) simulations. It was found that, the pure PBLG-b-PEG block copolymer self-assembles into long cylindrical micelles. By introducing AuNPs to the stock block copolymer solution, the formed aggregate morphology transforms to spherical micelles. The DPD simulation results well reproduced the morphological transformations observed in the experiments. And the simulation revealed that the main reason for the aggregate morphology transformation is the breakage of ordered packing of PBLG rods in micelle core by the added nanoparticles. Moreover, from the DPD simulations, the distribution information on nanoparticles was obtained. The nanoparticles were found to prefer to locate near the core/shell interface as well as in the core center of the micelles. The combination of experimental and simulation methods lead to a comprehensive understanding of such a complex self-assembly system. 相似文献
19.
Catalytic activity of supported Au nanoparticles deposited from block copolymer micelles 总被引:3,自引:0,他引:3
Jaramillo TF Baeck SH Cuenya BR McFarland EW 《Journal of the American Chemical Society》2003,125(24):7148-7149
Quasi-ordered, highly dispersed, gold nanoclusters of tightly controlled particle size were synthesized by dip-coating substrates with gold precursors encapsulated by block-copolymer micelles. By this method, gold particles (4.8 +/- 1.3 nm) were deposited on ITO-coated glass and shown to be catalytically active for electro-oxidation of carbon monoxide. XPS confirmed the catalytically active particles were predominantly Au0; however, a large fraction existed as Au3+. Whereas bulk gold is inert, these results demonstrate that catalytically active Au nanoparticles can be derived from micelle encapsulation. 相似文献
20.
Synthesis of highly dispersed,block copolymer‐grafted TiO2 nanoparticles within neat block copolymer films 下载免费PDF全文
Shimelis T. Hailu Saumil Samant Christopher Grabowski Michael Durstock Alamgir Karim Dharmaraj Raghavan 《Journal of polymer science. Part A, Polymer chemistry》2015,53(3):468-478
The objective of the study is to formulate exclusive block copolymer (BCP) nanocomposites by dispersing bcp end‐grafted nanoparticles (bcp‐g‐nps) of PMMA‐b‐PS‐g‐TiO2 within PS‐b‐PMMA matrix. PMMA‐b‐PS‐g‐TiO2 is synthesized using a “grafting‐to” approach and characterized by XPS and TGA to establish that the copolymer chains were bonded to NPs. Good dispersion of bcp‐g‐nps in PMMA and PS‐PMMA bcp films is observed, in contrast to poor dispersion in PS films. In PS‐PMMA films, the compatible and identical bcp nature of the end‐grafted polymer, and large NP size caused it to span across entire PS‐PMMA domains. Poor and good dispersion in PS and PMMA matrices, respectively, can be rationalized by the fact that NPs interactions are driven by the PMMA at the outer corona of the bcp‐g‐nps. Developing bcp‐g‐nps as a strategic route to preparation of highly dispersed high permittivity NPs like titanium dioxide (TiO2) in bcp matrix can have important ramifications for energy storage devices. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 468–478 相似文献