首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
I measured the induction of cytosine-cytosine dimer (C-C) densities after UV-C (less than 290 nm) and UV-B irradiation (290-320 nm) in the 2'-deoxy-[3H]cytidine labeled DNA of Cloudman S91 mouse melanoma cells using a new, sensitive high pressure liquid chromatography procedure. UV-B exposure resulted in 0.000034% C-C/J m-2 of the total cytosine radioactivity which is 10 times less than the rate during UV-C irradiation. Previous work with these melanoma cells showed a 4-fold lower rate of induction of thymine-containing pyrimidine dimers by UV-B than UV-C light (Niggli Photochem. Photobiol. 52, 519-524, 1990). Based on these results, the calculated ratios for the pyrimidine dimer subspecies showed no significant difference following UV-C and UV-B exposure. However, UV-C and UV-B light induce 10-20 times more thymine-containing pyrimidine dimers than C-C in the DNA of S91 cells.  相似文献   

2.
We compared the induction of pyrimidine dimer densities after UV-irradiation in mouse melanoma cells before and after treatment with cholera toxin. Treatment with cholera toxin stimulated tyrosinase activity up to 50-fold, leading to a marked, visually apparent increase in cellular melanin concentrations. Irradiation of treated and untreated cells was therefore designed to establish whether intracellular melanin protected cells from UV-induced DNA damage. In experiments described here, we determined cytosine-thymine (C-T) as well as thymine-thymine dimer levels (T-T) by high pressure liquid chromatography in cholera toxin-treated and untreated Cloudman S91 mouse melanoma cells after irradiation with UVC (less than 290 nm) and UVB light (290-320 nm). Surprisingly, induction of melanization had no effect on the formation of pyrimidine dimers by UVC or UVB irradiation. These results indicate that de novo melanin pigmentation induced via the c-AMP pathway is not involved in protection against UV-induced thymine-containing pyrimidine dimers. In separate experiments, irradiation of toxin-treated and untreated mouse melanoma cells with UVC or UVB light produced a 20-30% lower dimer density compared to irradiated human skin fibroblasts. This finding suggests that melanin has some protection properties against UV-induced pyrimidine dimers, although the exact defense mechanism seems highly complex.  相似文献   

3.
Abstract— Ultraviolet radiation of 220–300 nm is known to produce cyclobutyl pyrimidine dimers in extracellular DNA, in bacteria, and in mammalian cells in culture. The formation in vivo of such dimers in mammalian skin has remained inferential. We report that one of the important and recognizable biologic events that occurs in mammalian skin during irradiation is the formation of thymine dimers. [3H]-labelled thymidine was applied to the epilated skin of guinea pigs to label their DNA. Animals were irradiated individually, using wavelengths of either 254, 285–350, or 320–400 nm. Immediately after irradiation, epidermis was separated from the rest of the skin and homogenized; DNA and RNA were isolated. Irradiation with wavelengths of 285–350 nm, which included the sunburn-producing spectrum (i.e., 290–320 nm), produced thymine dimers (1·7–2·6 per cent of the total [3H]-thymine incorporated into DNA). Irradiation with 254nm also produced fewer dimers (0·46–1·2 percent); and 320–400 nm produced none. The dimer could be cleaved by 250 nm radiation to form thymine. The epidermal cell damage by ultraviolet radiation, particularly by the sunburn-producing spectrum (290–320 nm), may be related to the formation of such dimers.  相似文献   

4.
Abstract— Cultured cells derived from a goldfish were irradiated with 254nm ultraviolet light. Cell survival and splitting of pyrimidine dimers after photoreactivation treatment with white fluorescent lamps were examined by colony forming ability and by a direct dimer assay, respectively. When UV-irradiated (5 J/m2) cells were illuminated by photoreactivating light, cell survival was enhanced up to a factor of 9 (40min) followed by a decline after prolonged exposures. Exposure of UV-irradiated (15 J/m2) cells to radiation from white fluorescent lamps reduced the amounts of thymine-containing dimers in a photoreactivating fluence dependent manner, up to about 60% reduction at 120 min exposure. Keeping UV-irradiated cells in the dark for up to 120min did not affect either cell survival or the amount of pyrimidine dimers in DNA, indicating that there were not detectable levels of a dark-repair system in the cells under our conditions. Correlation between photoreactivation of colony forming ability and photoreactivation of the pyrimidine dimers was demonstrated, at least at relatively low fluences of photoreactivating light.  相似文献   

5.
The biological effectiveness of thymine-thymine cyclobutane dimers specifically induced by photosensitized ultraviolet-B irradiation was analyzed by host-cell reactivation of triplet-sensitized, UV-B irradiated plasmid pRSV beta gal DNA transfected into normal and repair-deficient Chinese hamster ovary cells. For comparison, pRSV beta gal DNA was also UV-C irradiated and transfected into the same cell lines. Ultraviolet endonuclease-sensitive site induction was determined after UV-C irradiation or acetophenone-sensitized UV-B irradiation of plasmid pRSV beta gal DNA. These data were used to calculate the number of cyclobutane pyrimidine dimers required to inactivate expression of the lacZ reporter gene in each irradiation condition. Transfection with UV-C-irradiated plasmid DNA resulted in a significantly greater reduction of reporter gene expression than did transfection with acetophenone-sensitized UV-B-irradiated pRSV beta gal DNA at equivalent induction of enzyme-sensitive sites. Since only a fraction of the inhibition could be accounted for by noncyclobutane dimer photoproducts, these results suggest that cytosine-containing pyrimidine cyclobutane dimers may be more effective than thymine-thymine dimers in inhibiting transient gene expression as measured in such host-cell reactivation experiments in mammalian cells.  相似文献   

6.
Abstract— S1 endonuclease was shown to remove thymine-containing pyrimidine dimers from UV-irradiated human DNA, although efficient removal could be demonstated only by using long digestion times, relatively high enzyme concentrations, and irradiation sufficient to yield dimer substitutions in DNA of 1 per 1W300 (dimers/base pair). Neutral and alkaline sucrose gradient analysis of strand break induction by S, of UV-irradiated DNA suggests that recognition of the dimer by S, is the limiting factor in its removal and dimer removal usually results from attack on the dimer containing DNA strand without the induction of a double-strand break.  相似文献   

7.
Thymine-containing photoproducts with chromatographic properties similar to those of cyclobutyl pyrimidine dimers can be formed in [3H]-thymine-labeled DNA in solution by 313 nm ultraviolet radiation in the presence of para-aminobenzoic acid (PABA), a compound used in sunscreen preparations. In the absence of PABA, similar fluences of 313 nm radiation do not produce significant numbers of these photoproducts. The thymine-containing photoproducts can be reversed by 254 nm radiation so that the tritium label migrates with the mobility of thymine monomer, a behavior characteristic of thymine-containing cyclobutyl pyrimidine dimers. This result supports previous, but less direct, data from other laboratories indicating that PABA can sensitize dimer formation in the DNA of bacterial and mammalian cells.  相似文献   

8.
Abstract— Ultraviolet light causes a type of damage to the DNA of human cells that results in a DNA strand break upon subsequent irradiation with wavelengths around 300 nm. This DNA damage disappears from normal human fibroblasts within 5 h, but not from pyrimidine dimer excision repair deficient xeroderma pigmentosum group A cells or from excision proficient xeroderma pigmentosum variant cells. The apparent lack of repair of the ultraviolet light DNA damage described here may contribute to the cancer prone nature of xeroderma pigmentosum variant individuals. These experiments show that the same amount of damage was produced at 0°C and 37°C indicating a photodynamic effect and not an enzymatic reaction. The disappearance of the photosensitive lesions from the DNA is probably enzymatic since none of the damage was removed at 0°C. Both the formation of the lesion and its photolysis by near ultraviolet light were wavelength dependent. An action spectrum for the formation of photosensitive lesions was similar to that for the formation of pyrimidine dimers and(6–4) photoproducts and included wavelengths found in sunlight. The DNA containing the lesions was sensitive to wavelengths from 304 to 340 nm with a maximum at 313 to 317 nm. This wavelength dependence of photolysis is similar to the absorption and photolysis spectra of the pyrimidine(6–4) photoproducts  相似文献   

9.
An immunoslot blot assay was developed to detect pyrimidine dimers induced in DNA by sublethal doses of UV (254 nm) radiation. Using this assay, one dimer could be detected in 10 megabase DNA using 200 ng or 0.5 megabase DNA using 20 ng irradiated DNA. The level of detection, as measured by dimer specific antibody binding, was proportional to the dose of UV and amount of irradiated DNA used. The repair of pyrimidine dimers was measured in human skin fibroblastic cells in culture following exposure to 0.5 to 5 J m-2 of 254 nm UV radiation. The half-life of repair was approximately 24, 7 and 6 h in cells exposed to 0.5, 2 and 5 J m-2 UV radiation, respectively. This immunological approach utilizing irradiated DNA immobilized to nitrocellulose should allow the direct quantitation of dimers following very low levels of irradiation in small biological samples and isolated gene fragments.  相似文献   

10.
Abstract— We compared artificial UV-sources such as germicidal- or sun-lamps with summer noon sunlight in Switzerland for selective efficiency in the induction of pyrimidine dimers in the DNA of human cells. In our studies we determined cytosine-thymine (C-T) as well as thymine-thymine dimer densities (T-T) by high pressure liquid chromatography in cultures of xeroderma pigmentosum cells of group A. Using far-UV light from a germicidal lamp, we found a rate of formation per Jirr2 for C-T and T-T of 0.0019% and 0.0024%, respectively, of the total thymine radioactivity in hydrolysates of [3H]thymidine labeled cells. After irradiation with an unfiltered sunlamp we measured a rate of formation of 0.0005% per Jm-2 both for C-T and T-T, based on the sunlamp emission of 297 ±4 nm wavelength. Utilization of Kodacel- or Mylar-filters lowered the rate of dimerization by a factor of 2 and 60, respectively. One hour of irradiation with noon summer sunlight induced 0.038 ±0.012% C-T and 0.036 ±0.011% T-T. This extent of dimer production is equivalent to 15 Jm-2 of far-UV exposure at 254 nm.  相似文献   

11.
Abstract— We measured excision repair of ultraviolet radiation (UVR)-induced pyrimidine dimers in DNA of the corneal epithelium of the marsupial, Monodelphis domestica , using damage-specific nucleases from Micrococcus luteus in conjunction with agarose gel electrophoresis. We observed that 100 J -2 of UVR from aFS–40 sunlamp(280–400 nm) induced an average of 2.2 ± 0.2 times 10-2 endonuclease-sensitive sites per kilobase (ESS/kb) (pyrimidine dimers) and that ∼ 50% of the dimers were repaired within 12 h after exposure. We also determined that an exposure of 400 J m-2 was needed to induce comparable numbers of pyrimidine dimers (2.5 times 10-2) in the DNA of skin of M. domestica in vivo . In addition, we found that 50% of the dimers were also removed from the epidermal cells of M. domestica within 12 h after exposure. A dose of 100 J m-2 was necessary to induce similar levels of pyrimidine dimers (2.0 ± 0.2 times 10-2) in the DNA of the cultured marsupial cell line Pt K2 ( Potorous tridactylus ).  相似文献   

12.
Monodelphis domestica was further characterized as a model for photobiological studies by measuring the excision repair capabilities of this mammal's cells both in vivo and in vitro. Excision repair capability of the established marsupial cell line, Pt K2 ( Potorous tridactylus ), was also determined. In animals held in the dark, we observed that ˜50% of the dimers were removed by 12 and 15 h after irradiation with 400 J m−2 and 600 J m−2, respectively, from an FS-40 sunlamp (280–400 nm). Cells from primary cultures of M. domestica excised ˜50% of the dimers by 24 h after irradiating with 50 J m−2 and 36 h after exposure to 100 J m−2 with no loss of dimers observed 24 h following a fluence of 300 J m−2. Pt K2 cells were observed to have removed -50% of the dimers at -12 h after 50 J m−2 with only -10% of the dimers removed at 24 h following 300 J m−2. The observed loss of pyrimidine dimers from epidermal DNA of UV-irradiated animals and from fibroblasts in culture, held in the dark, suggests that these marsupial cells are capable of DNA excision repair.  相似文献   

13.
INDUCTION OF phr GENE EXPRESSION BY PYRIMIDINE DIMERS IN Escherichia coli   总被引:2,自引:0,他引:2  
The photoreactivating enzyme (PRE) is concerned with mainly two kinds of light wavelength. The PRE splits UVC (254 nm)-induced pyrimidine dimer by absorbing UVA (320–380 nm) or visible light in its chromophore. The present paper demonstrates that the phr gene expression was efficiently induced in an excision defective strain (uvrA∼) after irradiation by UVC and UVB (290-320 nm), but not by UVA and visible light. In addition, the induced activity was significantly depressed by irradiation with UVA and visible light. Therefore we conclude that the phr gene expression can be induced by pyrimidine dimers.  相似文献   

14.
Abstract— An action spectrum for the immediate induction in DNA of single-strand breaks (SSBs, frank breaks plus alkali-labile sites) in human P3 teratoma cells in culture by monochromatic 254-, 270-, 290-, 313-, 334-, 365-, and 405-nm radiation is described. The cells were held at +0.5C during irradiation and were Iysed immediately for alkaline sedimentation analysis following the irradiation treatments. Linear fluence responses were observed over the fluence ranges studied for all energies. Irradiation of the cells in a D2O environment (compared with the normal H2O environment) did not alter the rate of induction of SSBs by 290-nm radiation, whereas the D2O environment enhanced the induction of SSBs by 365- and 405-nm irradiation. Analysis of the relative efficiencies for the induction of SSBs, corrected for quantum efficiency and cellular shielding, revealed a spectrum that coincided closely with nucleic acid absorption below 313 nm. At longer wavelengths, the plot of relative efficiency vs . wavelength contained a minor shoulder in the same wavelength region as that observed in a previously obtained action spectrum for stationary phase Bacillus subtilis cells. Far-UV radiation induced few breaks relative to pyrimidine dimers, whereas in the near-UV region of radiation, SSBs account for a significant proportion of the lesions relative to dimers, with a maximum number of SSBs per lethal event occurring at 365-nm radiation.  相似文献   

15.
Ultraviolet radiation produces erythema in human skin, and damages the DNA of living cells in skin. Previous work showed that broad-band UV-B (290-320 nm) radiation produced higher levels of cyclobutyl pyrimidine dimers in DNA of individuals with high UV-B sensitivity (low minimal erythema dose) than in subjects of low UV-B sensitivity [Freeman et al. (1986) J. Invest. Dermatol., 86, 34-36]. We examined the relationship between erythema induction and dimer yields in DNA of human skin irradiated in situ with narrow band radiation spanning the wavelength range 275-365 nm. We find that, in general, higher dimer yields are produced per incident photon in volunteers with higher susceptibility to erythema induced by radiation of the same wavelength.  相似文献   

16.
We have addressed the question whether the level of UV-B induced DNA damage can be accurately assessed by the measurement of the rate of unscheduled DNA synthesis (UDS). Cultured human fibroblasts were irradiated with UV radiation at 290, 313 or 365 nm. The LD50 was 85 J/m2 at 290 nm, 4500 J/m2 at 313 nm, and 70 kJ/m2 at 365 nm. The analysis of UDS measurements indicate complete arrest of repair processes within 24 h after irradiation, irrespective of the dose (in the range 10-60 J/m2 at 290 nm, and 250-1000 J/m2 at 313 nm). Irradiation at 365 nm failed to yield detectable evidence of UDS. Incubation of irradiated cells with an antiserum directed against both 6-4 type and cyclobutane-type pyrimidine dimers shows a clear parallelism between the disappearance of the antibody-binding determinants and the variation of the rate of UDS vs time after the end of the irradiation. Thus it is concluded that in UV-B irradiated normal cultured human fibroblasts, the lack of UDS reflects the absence of immunodetectable pyrimidine dimers.  相似文献   

17.
Abstract— Twelve flow-through estuarine microcosms were exposed daily to four different levels of UV-B radiation (290–320. nm)(1.57 ± 102, 6.43 ± 103, 6.86 ± 103 and 7.61 ± 103 J·m-2d−1) in addition to a natural level of visible solar radiation (380-800. nm). The parameters studied over a four week period were phytoplankton community composition, plankton biomass (ash-free dry weight), chlorophyll a concentration and primary productivity (radiocarbon uptake). With increased exposure to UV-B radiation there was an obvious alteration of the community composition. Daily exposure to enhanced levels of UV-B radiation also depressed the biomass, the chlorophyll a concentration and the radiocarbon uptake of samples from the ecosystems.  相似文献   

18.
PYRIMIDINE DIMER FORMATION IN HUMAN SKIN   总被引:1,自引:0,他引:1  
Cyclobutyl pyrimidine dimers are major photoproducts formed upon irradiation of DNA with ultraviolet light. We have developed a method for detecting as few as one pyrimidine dimer per million bases in about 50 ng of non-radioactive DNA, and have used this method to quantitate dimer yields in human skin DNA exposed in situ to UV. We found that UVA radiation (320–400 nm) produces detectable levels of dimers in the DNA of human skin. We also measured UVB-induced dimer yields in skin of individuals of differing sun sensitivity and found higher yields in individuals with higher UVB minimal erythema doses and greater sun sensitivity. These approaches should provide important information on damage induced in human skin upon exposure to natural or artificial sources of ultraviolet radiation.  相似文献   

19.
Abstract— Ultraviolet (UV) light-induced incorporation of bromodeoxyuridine (BrdUrd) into parental DNA of an excision-defective mutant of Escherichia coli has been observed by selective photolysis of bromouracil (BrUra)-containing regions in the parental DNA. It appears that the BrUra-containing regions occur only in that DNA which has served as a template for normal semiconservative replication. After an exposure at 254 nm which results in one pyrimidine dimer per 45times 106 daltons, incubation in BrdUrd resulted in BrUra–containing regions ˜ 1.5 times 104 nucleotides in length at intervals of ˜ 55 times 106 daltons in the parental DNA. Thus approximately one BrUra-containing region has occurred for every 1.2 pyrimidine dimers in the parental DNA. The observed incorporation of BrdUrd is interpreted in terms of a proposed model for postreplication repair in which genetic exchanges produce single-strand gaps in the parental DNA.  相似文献   

20.
THE FATE OF PYRIMIDINE DIMERS IN ULTRAVIOLET-IRRADIATED CHLAMYDOMONAS   总被引:1,自引:0,他引:1  
Abstract— We have developed a chromatographic technique for the separation of 32P-labeled pyrimidine nucleotide dimers of the form PypPy from 32P-phosphate in enzymatic hydroly sates of ultraviolet-irradiated DNA. Application of this technique to 32P-labeled Chlamydomonas reinhardii shows that ultraviolet irradiation of this organism induces pyrimidine dimers in both nuclear and chloroplast DNA. We have found no evidence that these dimers are excised from either DNA species after several hours incubation under non-photoreactivating conditions. A function has been derived to permit the pyrimidine-dimer content determined from radioactive-thymine-labeled cells to be conveniently compared to that obtained from 32P-phosphate-labeled cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号