首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present in this paper the structure resolution of a fluorinated inorganic-organic compound--Zn(3)Al(2)F(12)·[HAmTAZ](6)--by SMARTER crystallography, i.e. by combining powder X-ray diffraction crystallography, NMR crystallography and chemical modelling of crystal (structure optimization and NMR parameter calculations). Such an approach is of particular interest for this class of fluorinated inorganic-organic compound materials since all the atoms have NMR accessible isotopes ((1)H, (13)C, (15)N, (19)F, (27)Al, (67)Zn). In Zn(3)Al(2)F(12)·[HAmTAZ](6), (27)Al and high-field (19)F and (67)Zn NMR give access to the inorganic framework while (1)H, (13)C and (15)N NMR yield insights into the organic linkers. From these NMR experiments, parts of the integrant unit are determined and used as input data for the search of a structural model from the powder diffraction data. The optimization of the atomic positions and the calculations of NMR parameters ((27)Al and (67)Zn quadrupolar parameters and (19)F, (1)H, (13)C and (15)N isotropic chemical shifts) are then performed using a density functional theory (DFT) based code. The good agreement between experimental and DFT-calculated NMR parameters validates the proposed optimized structure. The example of Zn(3)Al(2)F(12)·[HAmTAZ](6) shows that structural models can be obtained in fluorinated hybrids by SMARTER crystallography on a polycrystalline powder with an accuracy similar to those obtained from single-crystal X-ray diffraction data.  相似文献   

2.
Hydrogen bonding and proton transfer in the solid state are studied on the crystals of isostructural anhydrous potassium and rubidium complex chloranilates by variable-temperature single crystal X-ray diffraction, solid state (1)H NMR and IR spectroscopies, and periodic DFT calculations of equilibrium geometries, proton potentials, and NMR chemical shifts. Their crystal structures reveal neutral molecules of chloranilic acid and its dianions connected into a chain by O-H···O hydrogen bond. A strong hydrogen bond with a large-amplitude movement of the proton with NMR shift of 13-17 ppm and a broad continuum in IR spectra between 1000 and 500 cm(-1) were observed. Periodic DFT calculations suggest that proton transfer is energetically more favorable if it occurs within a single pair of chloranilate dianion and chloranilic acid molecule but not continuously along the chains of long periodicity. The calculated chemical shifts confirm the assumption that the weak resonance signals observed at lower magnetic fields pertain to the case when the proton migrates to the acceptor side of the hydrogen bond. The detected situation can be described by a partial proton transfer.  相似文献   

3.
(13)C chemical shieldings and (14)N and (2)H electric field gradient (EFG) tensors of L-alanylglycine (L-alagly) dipeptide were calculated at RHF/6-31 + + G** and B3LYP/6-31 + + G** levels of theory respectively. For these calculations a crystal structure of this dipeptide obtained from X-ray crystallography was used. Atomic coordinates of different clusters containing several L-alagly molecules were used as input files for calculations. These clusters consist of central and surrounding L-alagly molecules, the latter forming short, strong, hydrogen bonds with the central molecule. Since the calculations did not converge for these clusters, the surrounding L-alagly molecules were replaced by glycine molecules. In order to improve the accuracy of calculated chemical shifts and nuclear quadrupole coupling constants (NQCCs), different geometry-optimization strategies were applied for hydrogen nuclei. Agreement between calculated and experimental data confirms that our optimized coordinates for hydrogen nuclei are more accurate than those obtained by X-ray diffraction.  相似文献   

4.
Highly accurate chemical-shift predictions in molecular solids are behind the success and rapid development of NMR crystallography. However, unusually large errors of predicted hydrogen and carbon chemical shifts are sometimes reported. An understanding of these deviations is crucial for the reliability of NMR crystallography. Here, recently reported large deviations of predicted hydrogen and carbon chemical shifts of a series of solid pyridinium fumarates are thoroughly analyzed. The influence of the geometry optimization protocol and of the computational level of NMR calculations on the accuracy of predicted chemical shifts is investigated. Periodic calculations with GGA, meta-GGA and hybrid functionals are employed. Furthermore, molecular corrections at the coupled-cluster singles-and-doubles (CCSD) level are calculated. The effect of nuclear delocalization on the structure and NMR shielding is also investigated. The geometry optimization with a computationally demanding hybrid functional leads to a substantial improvement in proton chemical-shift predictions.  相似文献   

5.
Polycrystalline samples of AlVO(4) have been prepared by two methods of synthesis and characterized by (27)Al and (51)V MAS NMR spectroscopy at 14.1 T. The MAS NMR spectra clearly reveal that essentially pure samples with minor impurities of V(2)O(5) and alumina have been obtained. From these samples, (27)Al quadrupole coupling parameters and isotropic chemical shifts as well as the magnitudes and relative orientations of the (51)V quadrupole coupling and chemical shift tensors have been determined with high precision for AlVO(4). These data have been obtained from a combined analysis of multiple-quantum (MQ) MAS NMR spectra and MAS NMR spectra of the central and satellite transitions. The (27)Al and (51)V NMR data show that the asymmetric unit for AlVO(4) contains three isolated VO(4) tetrahedra, one pentacoordinated Al site, and two AlO(6) octahedra. This is in agreement with the supposition that AlVO(4) is isostructural with FeVO(4) and with a recent structure refinement for AlVO(4) based on powder X-ray diffraction (XRD) data. The favorable agreement between the refined crystal structure from powder XRD and the NMR parameters is apparent from a convincing correlation between experimental (51)V quadrupole tensor elements and calculated (51)V electric field gradient tensor elements obtained by the point-monopole approach. An assignment of the (27)Al NMR data is obtained from similar calculations of the (27)Al electric field gradients and by estimation of the distortion of the AlO(6) octahedra.  相似文献   

6.
Various combinations of density functionals and pseudopotentials with associated valence basis-sets are compared for reproducing the known solid-state structure of [V 2O 2(OO) 2 l-lact 2] (2-) cis . Gas-phase optimizations at the B3LYP/SBKJC level have been found to provide a structure that is close to that seen in the solid state by X-ray diffraction. Although this may result in part from error compensation, this optimized structure allowed satisfactory reproduction of solution multinuclear NMR chemical shifts of the complex in all-electron DFT-IGLO calculations (UDFT-IGLO-PW91 level), suggesting that it is probably close to that found in solution. This combination of approaches has subsequently been used to optimize the structures of the vanadium oxoperoxo complexes [V 2O 3(OO) l-lact 2] (2-) cis , [V 2O 3(OO) l-lact 2] (2-) trans , and [VO(OO)( l-lact)(H 2O)] (-) cis . The (1)H, (13)C, (51)V, and (17)O NMR chemical shifts for these complexes have been calculated and compared with the experimental solution chemical shifts. Excellent agreement is seen with the (13)C chemical shifts, while somewhat inferior agreement is found for (1)H shifts. The (51)V and (17)O chemical shifts of the dioxo vanadium centers are well reproduced, with differences between theoretical and experimental shifts ranging from 22.9 to 35.6 ppm and from 25.1 to 43.7 ppm, respectively. Inferior agreement is found for oxoperoxo vanadium centers, with differences varying from 137.3 to 175.0 ppm for (51)V shifts and from 148.7 to 167.0 ppm for (17)O(oxo) shifts. The larger errors are likely to be due to overestimated peroxo O-O distances. The chosen methodology is able to predict and analyze a number of interesting structural features for vanadium(V) oxoperoxocomplexes of alpha-hydroxycarboxylic acids.  相似文献   

7.
Solid-state NMR experiments, analytical and numerical simulations of solid NMR powder patterns, ab initio self-consistent field and hybrid density functional theory calculations, and single-crystal X-ray diffraction are used to characterize the molecular structure and anisotropic NMR interaction tensors in the bis(pentamethylcyclopentadienyl)aluminum cation, [Cp(2)Al](+). This highly symmetric main group metallocene has a structure analogous to that of ferrocene and the cobaltocenium cation. The single-crystal X-ray diffraction structure is reported for [Cp(2)Al][AlCl(4)]. Solid-state (27)Al[(1)H] magic-angle spinning and static NMR experiments are used to study the aluminum chemical shielding and electric field gradient tensors, revealing axial symmetry in both cases with a large chemical shielding span of Omega = 83(3) ppm and a small nuclear quadrupole coupling constant, C(Q)((27)Al) = 0.86(10) MHz. Carbon-13 CPMAS NMR experiments in combination with ab initio calculations and simulations of the effects of chemical exchange on (13)C static powder patterns reveal dynamic rotation of rings and suggest a low internal rotational barrier for this process. Theoretical computations of interaction tensors using the Gaussian 98 and Amsterdam Density Functional software packages are in good agreement with experiment and lend insight into the molecular origin of these NMR interactions. Orientations of the NMR tensors determined from theory, the large chemical shielding span, and the very small value of C(Q)((27)Al) can all be rationalized in terms of the high molecular symmetry.  相似文献   

8.
Fumaramide derivatives were analyzed in solution by (1)H NMR spectroscopy and in the solid state by X-ray crystallography in order to characterize the formation of CH...O interactions under each condition and to thereby serve as models for these interactions in peptide and protein structure. Solutions of fumaramides at 10 mM in CDCl(3) were titrated with DMSO-d(6), resulting in chemical shifts that moved downfield for the CH groups thought to participate in CH...O=S(CD(3))(2) hydrogen bonds concurrent with NH...O=S(CD(3))(2) hydrogen bonding. In this model, nonparticipating CH groups under the same conditions showed no significant change in chemical shifts between 0.0 and 1.0 M DMSO-d(6) and then moved upfield at higher DMSO-d(6) concentrations. At concentrations above 1.0 M DMSO-d(6), the directed CH...O=S(CD(3))(2) hydrogen bonds provide protection from random DMSO-d(6) contact and prevent the chemical shifts for participating CH groups from moving upfield beyond the original value observed in CDCl(3). X-ray crystal structures identified CH...O=C hydrogen bonds alongside intermolecular NH...O=C hydrogen bonding, a result that supports the solution (1)H NMR spectroscopy results. The solution and solid-state data therefore both provide evidence for the presence of CH...O hydrogen bonds formed concurrent with NH...O hydrogen bonding in these structures. The CH...O=C hydrogen bonds in the X-ray crystal structures are similar to those described for antiparallel beta-sheet structure observed in protein X-ray crystal structures.  相似文献   

9.
N-heterocyclic carbene ligands (NHC) are widely utilized in catalysis and material science. They are characterized by their steric and electronic properties. Steric properties are usually quantified on the basis of their static structure, which can be determined by X-ray diffraction. The electronic properties are estimated in the liquid state; for example, via the 77Se liquid state NMR of Se-NHC adducts. We demonstrate that 77Se NMR crystallography can contribute to the characterization of the structural and electronic properties of NHC in solid and liquid states. Selected Se-NHC adducts are investigated via 77Se solid state NMR and X-ray crystallography, supported by quantum chemical calculations. This investigation reveals a correlation between the molecular structure of adducts and NMR parameters, including not only isotropic chemical shifts but also the other chemical shift tensor components. Afterwards, the liquid state 77Se NMR data is presented and interpreted in terms of the quantum chemistry modelling. The discrepancy between the structural and electronic properties, and in particular the π-accepting abilities of adducts in the solid and liquid states is discussed. Finally, the 13C isotropic chemical shift from the liquid state NMR and the 13C tensor components are also discussed, and compared with their 77Se counterparts. 77Se NMR crystallography can deliver valuable information about NHC ligands, and together with liquid state 77Se NMR can provide an in-depth outlook on the properties of NHC ligands.  相似文献   

10.
11.
The structure of supramolecular complexes formed by a naphthalene-spaced tweezer molecule as host and 1,4-dicyanobenzene (DCNB), 1,2,4,5-tetracyanobenzene (TCNB), and 7,7,8,8-tetracyano-p-quinodimethane (TCNQ) as aromatic, electron-deficient guests is investigated by solid-state NMR and X-ray diffraction measurements. Quantum chemical calculations using linear scaling methods are applied to predict and to assign the 1H NMR chemical shifts of the complexes. By combining experiment and theory, insights into intra- and intermolecular effects influencing the proton chemical shifts of the host-guest system are provided in the solid state.  相似文献   

12.
It has long been recognized that the 29Si and 27Al NMR chemical shifts for aluminosilicate crystals and glasses correlate to some extent with the T-O-T bond angle (where T is the tetrahedral atom Si or Al). With increasing T-O-T bond angle, the 29Si and 27Al NMR shieldings increase and the shifts thus become more negative. This result has been demonstrated both experimentally and through quantum computations. However, no simple qualitative explanation has ever been given for what appears to be a simple qualitative trend. We here provide such an explanation based upon quantum calculations. We have used high level ab initio NMR shielding calculations, natural bonding orbital (NBO) analysis, and natural chemical shielding (NCS) analysis, performed on model clusters with different T-O-T angles, to obtain an explanation for this trend from an electronic structure point of view. On the basis of both NBO populations and the NCS analysis, the following factors account for the correlation of shift with T-O-T angle: (1) a slight increase in population of the Al-O and Si-O bond orbital electrons and a dramatic change in bond orbital shapes and hybridization (with more s character and less bond bending as the T-O-T angle increases), (2) a movement of one of the lone pairs on O toward the vicinity of the Si or Al as the T-O-T angle increases, and (3) a change in the shielding contribution from the core 2p electrons of Al or Si. The changes in the 17O NMR shift with T-O-T angle are more complex, and the shifts are also more strongly influenced by distant atoms, but some systematic changes in O lone pair contributions can be identified.  相似文献   

13.
First-principles density functional theory oxygen chemical shift tensors were calculated for A(B,B')O(3) perovskite alloys Pb(Zr(1/2)Ti(1/2))O(3) (PZT) and Pb(Mg(1/3)Nb(2/3))O(3) (PMN). Quantum chemistry methods for embedded clusters and the gauge including projector augmented waves (GIPAW) method [C. J. Pickard and F. Mauri, Phys. Rev. B 63, 245101 (2001)] for periodic boundary conditions were used. Results from both methods are in good agreement for PZT and prototypical perovskites. PMN results were obtained using only GIPAW. Both isotropic δ(iso) and axial δ(ax) chemical shifts were found to vary approximately linearly as a function of the nearest-distance transition-metal/oxygen bond length, r(s). Using these results, we argue against Ti clustering in PZT, as conjectured from recent (17)O NMR magic-angle-spinning measurements. Our findings indicate that (17)O NMR measurements, coupled with first-principles calculations, can be an important probe of local structure in complex perovskite solid solutions.  相似文献   

14.
We investigate nuclear magnetic resonance (NMR) parameters of the rhodopsin chromophore in the dark state of the protein and in the early photointermediate bathorhodopsin via first-principles molecular dynamics simulations and NMR chemical shift calculations in a hybrid quantum/classical (QM/MM) framework. NMR parameters are particularly sensitive to structural properties and to the chemical environment, which allows us to address different questions about the retinal chromophore in situ. Our calculations show that both the 13C and the 1H NMR chemical shifts are rather insensitive to the protonation state of Glu181, an ionizable amino acid side chain located in the vicinity of the isomerizing 11-cis bond. Thus, other techniques should be better suited to establish its protonation state. The calculated chemical shifts for bathorhodopsin further support our previously published theoretical structure, which is in very good agreement with more recent X-ray data.  相似文献   

15.
The 17O chemical shifts of substituted benzyl ethers and a set of organotin(IV) derivatives containing O,C,O-chelating ligands were studied. Measured 17O chemical shifts were correlated with the additivity substituent increments for carbon atoms in the alkyl groups, and intramolecular Sn-O distance was obtained by X-ray diffraction techniques in the solid state.  相似文献   

16.
The (13)C NMR chemical shifts for alpha-D-lyxofuranose, alpha-D-lyxopyranose (1)C(4), alpha-D-lyxopyranose (4)C(1), alpha-D-glucopyranose (4)C(1), and alpha-D-glucofuranose have been studied at ab initio and density-functional theory levels using TZVP quality basis set. The methods were tested by calculating the nuclear magnetic shieldings for tetramethylsilane (TMS) at different levels of theory using large basis sets. Test calculations on the monosaccharides showed B3LYP(TZVP) and BP86(TZVP) to be cost-efficient levels of theory for calculation of NMR chemical shifts of carbohydrates. The accuracy of the molecular structures and chemical shifts calculated at the B3LYP(TZVP) level is comparable to those obtained at the MP2(TZVP) level. Solvent effects were considered by surrounding the saccharides by water molecules and also by employing a continuum solvent model. None of the applied methods to consider solvent effects was successful. The B3LYP(TZVP) and MP2(TZVP)(13)C NMR chemical shift calculations yielded without solvent and rovibrational corrections an average deviation of 5.4 ppm and 5.0 ppm between calculated and measured shifts. A closer agreement between calculated and measured chemical shifts can be obtained by using a reference compound that is structurally reminiscent of saccharides such as neat methanol. An accurate shielding reference for carbohydrates can be constructed by adding an empirical constant shift to the calculated chemical shifts, deduced from comparisons of B3LYP(TZVP) or BP86(TZVP) and measured chemical shifts of monosaccharides. The systematic deviation of about 3 ppm for O(1)H chemical shifts can be designed to hydrogen bonding, whereas solvent effects on the (1)H NMR chemical shifts of C(1)H were found to be small. At the B3LYP(TZVP) level, the barrier for the torsional motion of the hydroxyl group at C(6) in alpha-D-glucofuranose was calculated to 7.5 kcal mol(-1). The torsional displacement was found to introduce large changes of up to 10 ppm to the (13)C NMR chemical shifts yielding uncertainties of about +/-2 ppm in the chemical shifts.  相似文献   

17.
The structures of four N,O-diacylhydroxylamines (RCOHNOCOR', R, R'= Me, Ph) were determined in the solid state by X-ray diffraction and studied by NMR and IR spectroscopies in solution. The interpretation of the results was supported by ab-initio calculations of various tautomers and conformers, rotational barriers and chemical shifts. The results indicate the absence of OH tautomers (R-C(OH)=N-O-C(O)-R', N-acyloxyimidic acid); the NH tautomers (R-C(O)-NH-O-C(O)-R', O-acylhydroxamic acid) are present in DMSO solutions as equilibrium mixtures of a few conformers, their exchange being the likely source of 15N and 13C NMR line broadening.  相似文献   

18.
A series of mixed sodalite samples, Na(8)[Al(6)Si(6)O(24)]Br(x).(H(3)O(2))(2-x), with the unit cell stoichiometries varying in the 0 < x <2 region, was made by hydrothermal synthesis and subsequently transformed into Na(6+x)[Al(6)Si(6)O(24)]Br(x).(4H(2)O)(2-x) and Na(6+x)[Al(6)Si(6)O(24)]Br(x).circle(2-x) sodalites. Here, circle refers to an empty sodalite cage. The three series, referred hereafter to as the Br/basic, Br/hydro, and Br/dry series, were characterized by powder diffraction X-ray and by (23)Na, (27)Al, and (81)Br magic angle spinning (MAS) NMR and high-resolution triple quantum (TQ) MAS NMR spectroscopy. We determined that incorporation of Br(-) anions is 130 times more preferred than incorporation of H(3)O(2)(-) anions during the formation of sodalite cages, which permitted precise control of the halide content in the solid. Monotonic trends in chemical shifts were observed as a function of cage occupancy, reflecting continuous changes in structural parameters. A linear correlation between (81)Br chemical shift and lattice constant with a slope of -86 ppm/A was observed for all three series. Likewise, (23)Na chemical shifts for Na(+) cations in salt-bearing sodalite cages correlate linearly with the lattice constant. Both results indicate a universal dependence of the (23)Na and (81)Br chemical shifts on the Na-Br distance. The (27)Al chemical shifts of Br/basic and Br/hydro sodalites obey an established relation between delta(cs) and the average T-O-T bond angle of 0.72 ppm/degrees. Br/dry sodalites show two aluminum resonances, characterized by significantly different chemical shifts and quadrupolar interaction parameters. In that series, local symmetry distortions are evident from strong quadrupolar perturbations in the NMR spectra. P(Q) values for (27)Al vary between 0.8 MHz in Br/basic sodalites and 4.4 MHz in the Br/dry series caused by deviations from the tetrahedral symmetry of the salt-free sodalite cages. For (23)Na, P(Q) values of 0.8, 0.8, 2.0, and 5.7 MHz were found for sodium in bromo, basic, hydro, and dry cages, respectively. In addition, both (23)Na and (81)Br spectra offer some evidence that the Br(-) anions in the Br/dry sodalite are displaced from the center of the expanded sodalite cage. For all three series, the spectral deconvolution of the (23)Na NMR line shapes permits an accurate determination of the mixed sodalite stoichiometry.  相似文献   

19.
The electrical conductivity of aluminium doped zinc oxide (AZO, ZnO:Al) materials depends on doping induced defects and grain structure. This study aims at relating macroscopic electrical conductivity of AZO nanoparticles with their atomic structure, which is non-trivial because the derived materials are heavily disordered and heterogeneous in nature. For this purpose we synthesized AZO nanoparticles with different doping levels and narrow size distribution by a microwave assisted polyol method followed by drying and a reductive treatment with forming gas. From these particles electrically conductive, optically transparent films were obtained by spin-coating. Characterization involved energy-dispersive X-ray analysis, wet chemical analysis, X-ray diffraction, electron microscopy and dynamic light scattering, which provided a basis for a detailed structural solid-state NMR study. A multinuclear ((27)Al, (13)C, (1)H) spectroscopic investigation required a number of 1D MAS NMR and 2D MAS NMR techniques (T(1)-measurements, (27)Al-MQMAS, (27)Al-(1)H 2D-PRESTO-III heteronuclear correlation spectroscopy), which were corroborated by quantum chemical calculations with an embedded cluster method (EEIM) at the DFT level. From the combined data we conclude that only a small part of the provided Al is incorporated into the ZnO structure by substitution of Zn. The related (27)Al NMR signal undergoes a Knight shift when the material is subjected to a reductive treatment with forming gas. At higher (formal) doping levels Al forms insulating (Al, H and C containing) side-phases, which cover the surface of the ZnO:Al particles and increase the sheet resistivity of spin-coated material. Moreover, calculated (27)Al quadrupole coupling constants serve as a spectroscopic fingerprint by which previously suggested point-defects can be identified and in their great majority be ruled out.  相似文献   

20.
The excellent results of dispersion‐corrected density functional theory (DFT‐D) calculations for static systems have been well established over the past decade. The introduction of dynamics into DFT‐D calculations is a target, especially for the field of molecular NMR crystallography. Four 13C ss‐NMR calibration compounds are investigated by single‐crystal X‐ray diffraction, molecular dynamics and DFT‐D calculations. The crystal structure of 3‐methylglutaric acid is reported. The rotator phases of adamantane and hexamethylbenzene at room temperature are successfully reproduced in the molecular dynamics simulations. The calculated 13C chemical shifts of these compounds are in excellent agreement with experiment, with a root‐mean‐square deviation of 2.0 ppm. It is confirmed that a combination of classical molecular dynamics and DFT‐D chemical shift calculation improves the accuracy of calculated chemical shifts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号