首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Rustandi RR  Wang Y 《Electrophoresis》2011,32(21):3078-3084
CE-SDS gel technique has been used extensively in the field of monoclonal antibody (mAb) as a tool for product purity, stability, and characterization. It offers many advantages over the traditional labor-intensive SDS-PAGE slab gel technology with respect to speed and resolution. Monoclonal antibodies are known to cleave in the hinge region due to extreme pH, high temperature and in the presence of metals, especially copper. This cleavage will impact the shelf lifetime of mAb product hence its quality. CESDS gel method using Beckman PA800 with UV detection is used to characterize the effects of copper and other metals such as iron and zinc on mAb clipping. In addition, mAb integrity under high temperature and high pH stress conditions was also evaluated and the results clearly show that CE-SDS gel can distinguish clipping due to copper versus heat and/or high pH. The data presented illustrate the power of this simple CESDS gel technique in supporting the development of mAb from product quality and stability to the final product characterization.  相似文献   

2.
CE-based methods have increasingly been applied to the analysis of a variety of different type proteins. One of those techniques is imaged capillary isoelectric focusing (icIEF), a method that has been used extensively in the field of protein-based drug development as a tool for product identification, stability monitoring, and characterization. It offers many advantages over the traditional labor-intensive IEF slab gel method and even standard cIEF with on-line detection technologies with regard to method development, reproducibility, robustness, and speed. Here, specific examples are provided for biopharmaceutical glycoprotein products such as mAbs, erythropoietin (EPO), and recombinant Fc-fusion proteins, though the technique can be adapted for many other therapeutic proteins. Applications of iCIEF using a Convergent Bioscience instrument (Toronto, Canada) with whole-field imaging technology are presented and discussed. These include a quick method to establish an identity test for many protein-based products, product release, and stability evaluation of glycoproteins with respect to charge heterogeneity under accelerated temperature stress, different pH conditions, and in different formulations. Finally, characterization of glycoproteins using this iCIEF technology is discussed with respect to biosimilar development, clone selection, and antigen binding. The data presented provide a "taste' of what icIEF method can do to support the development of biopharmaceutical glycoprotein products from early clone screening for better product candidates to characterization of the final commercial products.  相似文献   

3.
Capillary gel electrophoresis (CGE) methods with UV detection were developed for reduced and non‐reduced mAb analysis. These methods can be used to evaluate mAb purity, offering more reproducible quantitation compared with that of traditional SDS‐PAGE methods. These CGE methods have been utilized as platform technology for bioprocess development, formulation development, mAb characterization, drug substance/drug product release testing as well as a required methodology for stability testing. We have found these CGE methods to be applicable across a platform of mAbs in preclinical and clinical development, with the majority of mAbs requiring no modification to the method conditions. This methodology has been ICH validated and transferred to several supporting organizations. The data presented herein describes the development of CGE methodology, platform application to mAb purity analysis, ICH validation, reliability metrics, and considerations on technology enhancement for improved performance and throughput.  相似文献   

4.
Capillary sieving electrophoresis utilizing SDS (CE(SDS)) is one of the most applied methods for the analysis of antibody (mAb) size heterogeneity in the biopharmaceutical industry. Inadequate peak identification of observed protein fragments is still a major issue. In a recent publication, we introduced an electrophoretic 2D system, enabling online mass spectrometric detection of generic CE(SDS) separated peaks and identification of several mAb fragments. However, an improvement regarding system stability and handling of the approach was desired. Here, we introduce a novel 8-port valve in conjunction with an optimized decomplexation strategy. The valve contains four sample loops with increased distances between the separation dimensions. Thus, successively coinjection of solvent and cationic surfactant without any additional detector in the second dimension is enabled, simplifying the decomplexation strategy. Removal efficiency was optimized by testing different volumes of solvents as presample and cationic surfactant as postsample zone. 2D measurements of the light and heavy chain of the reduced NIST mAb with the 8-port valve and the optimized decomplexation strategy demonstrates the increased robustness of the system. The presented novel set-up is a step toward routine application of CE(SDS)-CZE-MS for impurity characterization of proteins in the biopharmaceutical field.  相似文献   

5.
《Electrophoresis》2017,38(7):1044-1052
Capillary electrophoresis is an important technique for the characterization of monoclonal antibodies (mAbs), especially in the pharmaceutical context. However, identification is difficult as upscaling and hyphenation of used methods directly to mass spectrometry is often not possible due to separation medium components that are incompatible with MS detection. Here a CE‐MS method for the analysis of mAbs is presented analyzing SDS‐complexed samples. To obtain narrow and intensive peaks of SDS‐treated antibodies, an in‐capillary strategy was developed based on the co‐injection of positively charged surfactants and methanol as organic solvent. For samples containing 0.2% (v/v) of SDS, recovered MS peak intensities up to 97 and 95% were achieved using cetyltrimethylammonium bromide or benzalkonium chloride, respectively. Successful removal of SDS was shown in neutral coated capillaries but also in a capillary with a positively charged coating applying reversed polarity. The usefulness of this in‐capillary strategy was demonstrated also for other proteins and for antibodies dissolved in up to 10% v/v SDS solution, and in other SDS‐containing matrices, including the sieving matrix used in a standard CE‐SDS method and gel‐buffers applied in SDS‐PAGE methods. The developed CE‐MS approaches enable fast and reproducible characterization of SDS‐complexed antibodies.  相似文献   

6.
Capillary gel electrophoresis (CGE) in the presence of sodium dodecyl sulfate (SDS) is a well-established and widely used protein analysis technique in the biotechnology industry, and increasingly becoming the method of choice that meets the requirements of the standards of International Conference of Harmonization (ICH). Automated single channel capillary electrophoresis systems are usually equipped with UV absorbance and/or laser-induced fluorescent (LIF) detection options offering general applicability and high detection sensitivity, respectively; however, with limited throughput. This shortcoming is addressed by the use of multicapillary gel electrophoresis (mCGE) systems with LED-induced fluorescent detection (LED-IF), also featuring automation and excellent detection sensitivity, thus widely applicable to rapid and large-scale analysis of biotherapeutics, especially monoclonal antibodies (mAb). The methodology we report in this paper is readily applicable for rapid purity assessment and subunit characterization of IgG molecules including detection of non-glycosylated heavy chains (NGHC) and separation of possible subunit variations such as truncated light chains (Pre-LC) or alternative splice variants. Covalent fluorophore derivatization and the mCGE analysis of the labeled IgG samples with multi-capillary gel electrophoresis are thoroughly described. Reducing and non-reducing conditions were both applied with and without peptide N-glycosidase F mediated deglycosylation.  相似文献   

7.
This article reviews progress in the application of electrophoretic techniques for the separation of nanoparticles. Numerous types of nanoparticles have recently been synthesised and integrated into different products and procedures. Consequently, analytical methods for the efficient characterisation of nanoparticles are now required. Several studies have revealed that gel electrophoresis can readily be used for separating nanoparticles according to their size or shape. However, many other studies focused on separation of nanoparticles by CE. In some cases nanoparticles could be separated by CZE, simply using pure buffer as the BGE. In other studies, buffer additives (most often SDS) were used, enabling fast separations of metallic nanoparticles by size. Other CE methods also allowed for separation of nanoparticle conjugates with biomolecules. Dielectrophoresis is yet another electrophoretic technique useful in separation and characterisation of nanoparticles; particularly nanotubes. Detection methods often used after electrophoretic separation include UV/Vis absorption and fluorescence spectroscopy. Examples of recent and relevant older reports are presented here. The authors conclude that electrophoretic methods for nanoanalysis can provide inexpensive and efficient tools for quality assurance and safety control; and as a consequence, they can augment transfer of nanotechnologies from research to industry.  相似文献   

8.
Capillary electrophoresis (CE) is a new, high-resolution tool for the analysis of DNA restriction fragments and DNA amplified by the polymerase chain reaction (PCR). By combining many of the principles of traditional slab gel methods in a capillary format, it is possible to perform molecular size determinations of human and plant PCR amplification products and DNA restriction fragments. DNA restriction fragments and PCR products were analyzed by dynamic sieving electrophoresis (DSE) and capillary gel electrophoresis (CGE). As part of this study, sample preparation procedures, injection modes, and the use of molecular mass markers were evaluated. Optimum separations were performed using the uPage-3 (3% T, 3% C) CGE columns with UV detection at 260 nm. Membrane dialysis and ultrafiltration/centrifugation proved to be nearly equivalent methods of sample preparation. Reproducibility studies demonstrated that blunt-ended, non-phosphorylated markers (specifically allele generated markers) provide the most accurate calibration for PCR product analysis. This study demonstrates that CE offers a high-speed, high-resolution analytical method for accurately determining molecular size and/or allelic type as compared with traditional methodologies.  相似文献   

9.
The complexity of biotherapeutic products implies an ever-increasing list of product quality attributes that need to be monitored and characterized. In addition, the growing interest in implementing process analytical technology in biopharmaceutical production has further increased the testing burden, together with the need for rapid testing that can facilitate real-time or near-real-time decision-making. Capillary electrophoresis (CE) has made a place in biopharmaceutical analysis but is regarded as a low-throughput method, with the instrument dead time constituting more than 80% of the total time of analysis. In this study, the dead time of CE was utilized to analyse 3 mAb samples in a single-CE run. This approach resulted in an up to 77% reduction in the total analysis time and increased the productivity by up to 300%, compared to traditional single CE-ultraviolet runs, without compromising resolution or relative peak areas. Additionally, good method reproducibility was observed. The compatibility of the method has been demonstrated with protein A eluate and cation exchange chromatography fractions. We, thus, propose that sequential injections can be applied for fast and robust CE analysis of biopharmaceuticals.  相似文献   

10.
《Electrophoresis》2017,38(9-10):1353-1365
Capillary and microfluidic chip electrophoresis technologies are heavily utilized for development, characterization, release, and stability testing of biopharmaceuticals. Within the biopharmaceutical industry, CE‐SDS and M‐CGE are commonly used for purity determination by separation and quantitation of size‐based variants. M‐CGE is used primarily as an R&D tool for product and process development, while cGMP release and stability testing applications are commonly reserved for CE‐SDS. This paper describes the establishment of an M‐CGE platform method to be used for R&D and cGMP applications, including release and stability testing, for monoclonal antibodies. The M‐CGE platform method enables testing for product development support and cGMP release and stability using the same method, and utilization of one CE technology for the entire lifecycle of a biopharmaceutical product. Critical method parameters were identified, and the analytical design space of those critical parameters was defined using design of experiments (DOE) studies. Once defined through DOE studies, the method design space was validated according to ICH Q2 (R1) guidelines. Additional molecules of the same validated class were verified for use in the method by experimental confirmation of accuracy, specificity, and stability indicating capabilities. The platform method model facilitates rapid utilization of the method in development and GMP testing environments, and eliminates the need for individual validations for assets of the same class entering early stage development.  相似文献   

11.
Iqbal J  Burbiel JC  Müller CE 《Electrophoresis》2006,27(12):2505-2517
Fast and convenient CE assays were developed for the screening of adenosine kinase (AK) inhibitors and substrates. In the first method, the enzymatic reaction was performed in a test tube and the samples were subsequently injected into the capillary by pressure and detected by their UV absorbance at 260 nm. An MEKC method using borate buffer (pH 9.5) containing 100 mM SDS (method A) was suitable for separating alternative substrates (nucleosides). For the CE determination of AMP formed as a product of the AK reaction, a phosphate buffer (pH 7.5 or 8.5) was used and a constant current (95 microA) was applied (method B). The methods employing a fused-silica capillary and normal polarity mode provided good resolution of substrates and products of the enzymatic reaction and a short analysis time of less than 10 min. To further optimize and miniaturize the AK assays, the enzymatic reaction was performed directly in the capillary, prior to separation and quantitation of the product employing electrophoretically mediated microanalysis (EMMA, method C). After hydrodynamic injection of a plug of reaction buffer (20 mM Tris-HCl, 0.2 mM MgCl2, pH 7.4), followed by a plug containing the enzyme, and subsequent injection of a plug of reaction buffer containing 1 mM ATP, 100 microM adenosine, and 20 microM UMP as an internal standard (I.S.), as well as various concentrations of an inhibitor, the reaction was initiated by the application of 5 kV separation voltage (negative polarity) for 0.20 min to let the plugs interpenetrate. The voltage was turned off for 5 min (zero-potential amplification) and again turned on at a constant current of -60 microA to elute the products within 7 min. The method employing a polyacrylamide-coated capillary of 20 cm effective length and reverse polarity mode provided good resolution of substrates and products. Dose-response curves and calculated K(i) values for standard antagonists obtained by CE were in excellent agreement with data obtained by the standard radioactive assay.  相似文献   

12.
Capillary electrophoresis for the analysis of meat authenticity   总被引:1,自引:0,他引:1  
In this overview, different meat authenticity issues are presented, as well as a wide variety of methods available for meat authentication. Unlike chromatographic, traditional gel electrophoretic, or immunological methods, which have been routinely used in analytical laboratories, the application of capillary electrophoresis (CE) is relatively new in solving meat authentication issues. Several unique CE applications based on meat protein fingerprinting are discussed for the analysis of meat species in unheated meat products. For protein data interpretation, pattern recognition is used to account for the natural variability present within the same meat species. While gel DNA-based methods are widely used for determining meat species in heat processed products, few DNA-based methods utilizing CE have been reported. Moreover, the methods reported are qualitative or semiquantitative. Thus, the need for quantitative competitive PCR CE methods in the determination of meat species is addressed. For the determination of meat extenders, CE methods were either protein-based or based on specific markers. Polyphenols are used as specific markers for soy detection and hydroxyproline is used as a specific marker for collagen determination. Finally, the potential of electrophoretically mediated miroanalysis (EMMA) for the detection of meat that may have been previously frozen and retailed as "fresh" is highlighted.  相似文献   

13.
A new capillary electrophoresis (CE) method was developed for the rapid, simple and selective determination of thiosulfate, sulfide and sulfite species. The proposed method is based on the in-capillary derivatization of separated sulfur anions by mixing their zones with the iodine zone during the electrophoretic migration and direct UV detection of iodide formed. The optimal conditions for the separation and derivatization reaction were established by varying electrolyte pH, electrolyte counter-ion, concentration of iodine, and applied voltage. The optimized separations were carried out in 20 mmol/L Tris-chloride electrolyte (pH 8.5) using direct UV detection at 214 nm. All three sulfur species were well resolved in less than 4 min. The method gives repeatability comparable or even better than this obtained for sulfur anions using standard CE technique. The proposed CE system was applied to the monitoring of sulfur anions in spent fixing solutions during the electrolytic oxidation.  相似文献   

14.
The four classical modes of electrophoresis of protein molecules (sodium dodecyl sulphate electrophoresis, SDS-PAGE, isoelectric focusing, IEF, and immobilized pH gradients, IPGs, two-dimensional maps, 2D, and capillary electrophoresis, CE) are here reviewed, with special emphasis on recent innovations. Thus, in the case of SDS-PAGE, a novel method, consisting in focusing SDS-protein micelles against a gradient of cationic charges grafted onto a polyacrylamide gel is presented. In the case of IEF, the recent decoding of the structure, polydispersity, molecular mass distribution and buffering properties of the soluble carrier ampholyte buffers are here discussed. In regard to two dimensional mapping, recent instrumentation for performing 2D maps in horizontal, large gel slabs (up to 30 cm × 40 cm) and in a radial format for the SDS dimension is here evaluated. Finally, in the case of CE, three major applications are presented: a thorough study of capillary IEF and of all experimental variables, a method of importance in screening of rDNA products; the possibility of running proteins and peptide separations in very acidic, amphoteric, isoelectric buffers in absence of any capillary coating; finally, the possibility of producing a facile, user friendly, covalent coating of the wall silanols via bonding of quaternarized piperazines endowed with an iodinated tail. In acidic, volatile buffers, such protein/peptide runs can be directly interfaced with mass spectrometry instrumentation.  相似文献   

15.
Summary Acrylamide and N,N-methylenebisacrylamide were copolymerized in the presence of a protein to form a gel which was pressed through a sieve. The gel particles obtained were packed into a chromatographic tube. The experimental conditions for the polymerization are such that the pores of the gel particles are large enough to permit the protein to diffuse out of the particles, so that the entrapped protein can be removed from the bed by washing with an aqueous solution. However the interaction with the matrix is so strong that the protein can be desorbed only by a buffer containing 0.5 M sodium chloride or by a 10% solution of acetic acid containing 10% SDS. When a sample containing the protein present during the polymerization was applied to the column along with other proteins this protein was the only one adsorbed. The technique worked selectively with hemoglobin, cytochrome C and transferrin.  相似文献   

16.
Salvia officinalis (commonly called Sage) and similar plants contain many compounds of pharmaceutical interest and are used as a tea or in various pharmaceutical products. In this work, the use of CE for analysis of aqueous or ethanolic extracts from various Salvia plants has been studied. Especially, several buffers like borate, phosphate, acetate, etc., were examined under different concentrations, pH, separation voltage, injection time, and other parameters to find the optimal separation conditions. The optimization was also performed using experimental design and artificial neural networks. The optimal conditions were: separation voltage +20 kV, 40 mM buffer borate, pH 9.2, injection time 5 s, and UV detection at 280 nm. A new CE method has been developed, validated, and applied to analyze samples of S. officinalis from various countries.  相似文献   

17.
To improve the detection sensitivity and determine phenotypes of haptoglobin (Hp), a prefilling technique was developed and tested in capillary electrophoresis (CE) with UV–vis absorbance detection. Adding 0.01% sodium dodecyl sulfate (SDS) to the protein sample and 0.1% SDS to the prefilling buffer solution, on-line stacking and microheterogeneity separation of Hp were achieved. In addition, the influences of pH, buffer concentration, sample and prefilling buffer SDS concentration upon resolution were examined. Under optimized conditions, Hp-microheterogeneity was well resolved and two phenotypes of Hp (Hp 1-1 and Hp 2-2) were differentiated. This method was applied to the analysis of sera from normal individuals and β-Thalassemia patients. After the depletion of albumin (HSA) and immunoglobulin G (IgG), this method allowed to determine two phenotypes in different individuals and to detect the decrease of Hp in β-Thalassemia patients. Featuring high efficiency, speed and simplicity, the proposed method shows great potential for use in clinical diagnosis and proteome research.  相似文献   

18.
A simple and highly sensitive CE–UV method was applied in the determination of l ‐ctrulline, which was developed from an oral formulation for pediatric use. The novel method was based on the analysis of l ‐citrulline for direct ultraviolet detection at 198 nm. The BGE consisted of 10 mM sodium tetraborate and 50 mM SDS at pH 9, and the electrophoretic parameters were optimized. The method was validated in terms of specificity, linearity, LOD, LOQ, precision, accuracy, and robustness. The LOD and LOQ obtained were 1.36 and 4.54 μg/mL, respectively. In addition, the method offers higher sensitivity and specificity compared with the results obtained from HPLC method using UV‐detectors, in which l‐ citrulline needs to be derivatizated. Furthermore, low cost and simplicity of the system allowed the rapid and simple quantitation of l‐ citrulline in the oral formulation for quality control and stability indicated method.  相似文献   

19.
mAbs are highly complex proteins that present a wide range of microheterogeneity that requires multiple analytical methods for full structure assessment and quality control. As a consequence, the characterization of mAbs on different levels is particularly product‐ and time‐consuming. CE‐MS couplings, especially to MALDI, appear really attractive methods for the characterization of biological samples. In this work, we report the last instrumental development and performance of the first totally automated off‐line CE‐UV/MALDI‐MS/MS. This interface is based on the removal of the original UV cell of the CE apparatus, modification of the spotting device geometry, and creation of an integrated delivery matrix system. The performance of the method was evaluated with separation of five intact proteins and a tryptic digest mixture of nine proteins. Intact protein application shows the acquisition of electropherograms with high resolution and high repeatability. In the peptide mapping approach, a total number of 154 unique identified peptides were characterized using MS/MS spectra corresponding to average sequence coverage of 64.1%. Comparison with NanoLC/MALDI‐MS/MS showed complementarity at the peptide level with an increase of 42% when using CE/MALDI‐MS coupling. Finally, this work represents the first analysis of intact mAb charge variants by CZE using an MS detection. Moreover, using a peptide mapping approach CE‐UV/MALDI‐MS/MS fragmentation allowed 100% sequence coverage of the light chain and 92% of the heavy chain, and the separation of four major glycosylated peptides and their structural characterization.  相似文献   

20.
Claeys D  Geering K  Meyer BJ 《Electrophoresis》2005,26(6):1189-1199
Two-dimensional (2-D) Blue Native/SDS gel electrophoresis combines a first-dimensional separation of monomeric and multimeric proteins in their native state with a second denaturing dimension. These high-resolution 2-D gels aim at identifying multiprotein complexes with respect to their subunit composition. We applied this method for the first time to analyze two human platelet subproteomes: the cytosolic and the microsomal membrane protein fraction. Solubilization of platelet membrane proteins was achieved with the nondenaturing detergent n-dodecyl-beta-D-maltoside. To validate native solubilization conditions, we demonstrated the correct assembly of the Na,K-ATPase, a functional multimeric transmembrane protein, when expressed in Xenopus oocytes. We identified 63 platelet proteins after in-gel tryptic digestion of 58 selected protein spots and liquid chromatography-coupled tandem mass spectrometry. Nine proteins were detected for the first time in platelets by a proteomic approach. We also show that this technology efficiently resolves several known membrane and cytosolic multiprotein complexes. Blue Native/SDS gel electrophoresis is thus a valuable procedure to analyze specific platelet subproteomes, like the membrane(-bound) protein fraction, by mass spectrometry and immunoblotting and could be relevant for the study of protein-protein interactions generated following platelet activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号