首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The density functional theory and Hartree–Fock methods were used to investigate the proton transfer reaction for a series of model clusters of zeolite/(H2O)n; n=1,2,3, and 4. Without promoted water, the hydrogen-bonded dimer of the water/zeolite system exists as a simple hydrogen-bonded complex, ZOH.(H2O)2, and no proton transfer occurs from zeolite to water. The third promoted water, ZOH(H2O)2H2O, was found to induce a pathway for proton transfer, but at least addition two promoted molecules, ZO(H3O+)H2O(H2O)2, must be involved for complete proton transfer from zeolite to H2O. The results show that the hydronium ion in water cluster adsorbed on zeolite, ZO(H3O+)(H2O)3, can considerably affect the structure and bonding of the hydrogen-bonded dimer of water. The OO distance is contracted from 2.818 Å found in the neutral complex, ZOH(H2O)4, to 2.777 Å for ion-pair complex, ZO(H3O+)(H2O)3. The distance between the oxygen of the hydronium ion and the zeolitic acid site oxygen is predicted to be 2.480 Å which is in good agreement with the experimentally observed value of 2.510 Å. The corresponding density functional adsorption energy of the high coverages of adsorbing molecules on zeolite is calculated to be −9.14 kcal/mol per molecule at B3LYP/6-311+G(d,p) level of theory and compares well with the experimental observation of −8.20 kcal/mol.  相似文献   

2.
Electronic energies, geometries, and harmonic vibration frequencies for the reactants, products, and transition state for the Cl(3P)+C2H6→C2H5+HCl abstraction reaction were evaluated at the HF and MP2 levels using several correlation consistent polarized-valence basis sets. Single-point calculations at PMP2, MP4, QCISD(T), and CCSD(T) levels were also carried out. The values of the forward activation energies obtained at the MP4/cc-pVTZ, QCISD(T)/cc-pVTZ, and CCSD(T)/cc-pVTZ levels using the MP2/cc-pVTZ structures are equal to −0.1, −0.4, and −0.3 kcal/mol, respectively. The experimental value is equal to 0.3±0.2 kcal/mol. We found that the MP2/aug-cc-pVTZ adiabatic vibration energy for the reaction (−2.4 kcal/mol) agrees well with the experimental value −(2.2–2.6) kcal/mol. Rate constants calculated with the zeroth-order interpolated variational transition state (IVTST-0) method are in good agreement with experiment. In general, the theoretical rate constants differ from experiment by, at most, a factor of 2.6.  相似文献   

3.
Ab initio MO GB theory which includes the continuum model of solvent effect using generalized Born formula has been applied to the dimerization reaction of HCN in aqueous solution which is the starting step in prebiotic synthesis of purine precursors from aqueous hydrogen cyanide. Three steps considered were: (i) the reaction of HCN and H2O to produce the CN anion, (ii) the reaction of CN with HCN to give the NC–CH=N anion, and (iii) the addition of a proton to the anion to give iminoacetonitrile. The formation of CN ion from HCN in aqueous solution requires 15.1 kcal/mol (the experimental value estimated from the dissociation constant of HCN in water is 14.8 kcal/mol). The reaction of CN with HCN requires the activation energy of 32.2 kcal/mol (MP2/6-31++G**//HF/6-31++G**) to give the dimer. This barrier height is reduced to 26.1 kcal/mol when HCN is associated with H3O+. In the presence of NH3 in aqueous solution, CN is produced easily by the reaction of HCN and NH3 with a low activation energy of 4.3 kcal/mol. It was shown that the formation of CN becomes easier in ammoniacal solution, and the dimerization occurs efficiently in aqueous solutions which contain NH3.  相似文献   

4.
One-dimensional Co(dien)2(VO3)3·(H2O) was prepared from the hydrothermal reaction of NH4VO3, Co2O3, diethylenetriamine (dien) and H2O at 130 °C. The compound crystallizes in the monoclinic system, space group P21/c with a=16.1581(6) Å, b=8.7006(3) Å, c=13.9893(4) Å, β=103.1483(11)°, V=1915.13(11) Å3, Z=4, and R1=0.0268 for 3060 observed reflections. Single crystal X-ray diffraction revealed that the structure is composed of infinite one-dimensional chains formed by corner-sharing VO4 tetrahedra with Co(dien)3+ complex cations and crystallization water molecules occupying the interchain positions, which are held together to a three-dimensional network via extensive hydrogen-bonding interactions. The compound, with a new zig-zag conformation of metavanadate chains, is the first example of vanadium oxides incorporating trivalent transition metal coordination groups. Other characterizations by elemental analysis, IR and thermal analysis are also described.  相似文献   

5.
Synthesis, structure, spectroscopy and thermal properties of complex [Co(NCS)2(hmt)2(H2O)2][Co(NCS)2(H2O)4] (H2O) (I), assembled by hexamethylenetetramine and octahedral Co(II) metal ions, are reported. Crystal data for I: Fw 387.34, a=9.020(8), b=12.887(9), c=7.95(1) Å, =96.73(4), β=115.36(5), γ=94.16(4)°, V=820(1) Å3, Z=2, space group=P−1, T=173 K, λ(Mo-K)=0.71070 Å, ρcalc=1.718567 g cm−3, μ=17.44 cm−1, R=0.088, Rw=0.148. An interesting two-dimensional network is assembled via hydrogen bonds through coordinated and free water molecules. The d–d transition energy levels of Co(II) ion are determined by UV–vis spectroscopy and calculated by ligand field theory. The calculated results agree well with experiment ones.  相似文献   

6.
Gaussian-2 ab initio calculations were performed to examine the six modes of unimolecular dissociation of cis-CH3CHSH+ (1+), trans-CH3CHSH+ (2+), and CH3SCH2+ (3+): 1+→CH3++trans-HCSH (1); 1+→CH3+trans-HCSH+ (2); 1+→CH4+HCS+ (3); 1+→H2+c-CH2CHS+ (4); 2+→H2+CH3CS+ (5); and 3+→H2+c-CH2CHS+ (6). Reactions (1) and (2) have endothermicities of 584 and 496 kJ mol−1, respectively. Loss of CH4 from 1+ (reaction (3)) proceeds through proton transfer from the S atom to the methyl group, followed by cleavage of the C–C bond. The reaction pathway has an energy barrier of 292 kJ mol−1 and a transition state with a wide spectrum of nonclassical structures. Reaction (4) has a critical energy of 296 kJ mol−1 and it also proceeds through the same proton transfer step as reaction (3), followed by elimination of H2. Formation of CH3CS+ from 2+ (reaction (5)) by loss of H2 proceeds through protonation of the methine (CH) group, followed by dissociation of the H2 moiety. Its energy barrier is 276 kJ mol−1. On both the MP2/6-31G* and QCISD/6-31G* potential-energy surfaces, the H2 1,1-elimination from 3+ (reaction (6)) proceeds via a nonclassical intermediate resembling c-CH3SCH2+ and has a critical energy of 269 kJ mol−1.  相似文献   

7.
The electronic structure of Na2C2 is studied using ab initio electronic structure methods and is compared to the companion molecule Li2C2. Both the linear Dh and planar structures are minima on the ground state potential surface with the planar D2h conformation being the lowest energy form, similar to Li2C2. At the CCSD(t) level the planar form is more stable that the linear by 11.2 kcal/mol as compared with 7.34 kcal/mol for Li2C2. Both molecules are significantly ionic. The vibrational frequencies, atomization energy at 0 K, D0, and the standard enthalpy of formation, are calculated and compared to those of Li2C2 as well as HCCH, FCCF and ClCCCl. We find D0 and to be 331.1 and 84.92 kcal/mol for Li2C2 and 298.3 and 93.25 kcal/mol for Na2C2. We calibrate these by calculating the same quantities for HCCH, FCCF and ClCCCl.  相似文献   

8.
The reaction paths of nitromethane leading to the dissociation products or isomerization to methyl nitrite have been computationally investigated at the CAS-SCF and DFT levels of theory. Additionally, the CAS-SCF wave functions were used as reference in a second-order perturbation treatment, CASPT2, in order to obtain a good estimate for the activation energy of each reaction path. Both methods predict the isomerization as a concerted reaction. However, the behavior of the two approximations with respect to dissociation is rather different; while CASPT2 predicts a barrier height of (≈59 kcal/mol) in good accordance with the experimental activation energy (59.0 kcal/mol), B3-LYP/6-31G* calculations overestimate the barrier for more than 30 kcal/mol. The DFT prediction of the dissociation channel exhibits inverse symmetry breaking, dissociating to the unphysical absurd CH3δ+ plus NO2δ−.  相似文献   

9.
The syntheses and structural determination of NdIII and ErIII complexes with nitrilotriacetic acid (nta) were reported in this paper. Their crystal and molecular structures and compositions were determined by single-crystal X-ray structure analyses and elemental analyses, respectively. The crystal of K3[NdIII(nta)2(H2O)]·6H2O complex belongs to monoclinic crystal system and C2/c space group. The crystal data are as follows: a=1.5490(11) nm, b=1.3028(9) nm, c=2.6237(18) nm, β=96.803(10)°, V=5.257(6) nm3, Z=8, M=763.89, Dc=1.930 g cm−3, μ=2.535 mm−1 and F(000)=3048. The final R1 and wR1 are 0.0390 and 0.0703 for 4501 (I>2σ(I)) unique reflections, R2 and wR2 are 0.0758 and 0.0783 for all 10474 reflections, respectively. The NdIIIN2O7 part in the [NdIII(nta)2(H2O)]3− complex anion has a pseudo-monocapped square antiprismatic nine-coordinate structure in which the eight coordinate atoms (two N and six O) are from the two nta ligands and a water molecule coordinate to the central NdIII ion directly. The crystal of the K3[ErIII(nta)2(H2O)]·5H2O complex also belongs to monoclinic crystal system and C2/c space group. The crystal data are as follows: a=1.5343(5) nm, b=1.2880(4) nm, c=2.6154(8) nm, b=96.033(5)°, V=5.140(3) nm3, Z=8, M=768.89, Dc=1.987 g cm−3, μ=3.833 mm−1 and F(000)=3032. The final R1 and wR1 are 0.0321 and 0.0671 for 4445 (I>2σ(I)) unique reflections, R2 and wR2 are 0.0432 and 0.0699 for all 10207 reflections, respectively. The ErIIIN2O7 part in the [ErIII(nta)2(H2O)]3− complex anion has the same structure as NdIIIN2O7 part in which the eight coordinate atoms (two N and six O) are from the two nta ligands and a water molecule coordinate to the central NdIII ion directly.  相似文献   

10.
Rate coefficients for the reactions of cyclohexadienyl (c-C6H7) radicals with O2 and NO were measured at 296 ± 2 K. The c-C6H7 radicals were detected selectively by laser-induced fluorescence. The rate coefficient for the reaction of c-C6H7 with O2, (4.4 ± 0.5) × 10−14 cm3 molecule−1 s−1, was independent of the bath-gas (He) pressure (13–80 Torr). In the reaction of c-C6H7 with NO, thermal equilibrium among c-C6H7, NO, and C6H7NO was observed. The forward and reverse reactions were in the falloff region, and the equilibrium constant was (1.5 ± 0.6) × 10−15 cm3 molecule−1.  相似文献   

11.
The reaction of copper chloride dihydrate and ferric chloride hexahydrate with a tripodal N4 ligand (ntb) under mild conditions affords two novel complexes [Cu(ntb)Cl]2[CuCl4] · 2H2O (1) and [Fe(ntb)Cl2]Cl · 3H2O (2). The reaction of ferric chloride with another N4 ligand, bispicpn, forms an octahedral mononuclear complex, [Fe(bispicpn)Cl2]Cl (3). Single-crystal X-ray structural studies of 1, 2 and 3 reveal the formation of hydrogen-bond sustained 3D, 2D and 1D networks, respectively, involving (N–HO) and (N–HCl) interactions. The packing arrangement in 2 further reveals the existence of hexagonal channels with helical propagation along the diagonal of the crystallographic b- and c-axes. The reactions of these complexes with 3,5-di-tert-butylcatechol have been studied in dimethylformamide. NMR techniques have been used to identify the reaction products.  相似文献   

12.
The compound [Zn(H2O)4]2[H2As6V15O42(H2O)]·2H2O (1) has been synthesized and characterized by elemental analysis, IR, ESR, magnetic measurement, third-order nonlinear property study and single crystal X-ray diffraction analysis. The compound 1 crystallizes in trigonal space group R3, a=b=12.0601(17) Å, c=33.970(7) Å, γ=120°, V=4278.8(12) Å3, Z=3 and R1(wR2)=0.0512 (0.1171). The crystal structure is constructed from [H2As6V15O42(H2O)]4− anions and [Zn(H2O)4]2+ cations linked through hydrogen bonds into a network. The [H2As6V15O42(H2O)]6− cluster consists of 15 VO5 square pyramids linked by three As2O5 handle-like units.  相似文献   

13.
The title calixarene, dimanganese thiacalix[4]arene tetrasulfonate, was prepared and its crystal structure was determined. [Mn(H2O)6]2[thiacalix[4]arene tetrasulfonate]·0.5H2O crystallizes in the monoclinic system, P2(1)/m space group, with a=13.014 (6), b=14.146 (9), c=13.184 (7) Å, β=113.307 (10)°, V=2229 (2) Å3 and Dc=1.710 gcm−3, Z=2. The title calixarene exists in the solid state as bilayer structure. The hydrophobic organic layer consists of thiacalix[4]arene tetrasulfonate in an up-down fashion, whereas, the hydrophilic inorganic layer consists of hexaaquamanganese (II) which is linked to the former through a second-sphere coordination.  相似文献   

14.
闫广精  王春波  张月  陈亮 《燃料化学学报》2019,47(10):1163-1172
采用密度泛函理论研究了H_2O对SO_2在CaO(001)表面上吸附的影响。结果表明,以四种形式(-H_2O、-H、-OH和-H-OH)存在的H_2O使SO_2在CaO表面上的吸附构型发生改变。SO_2在不同形式H_2O基团邻位吸附时,-H使S原子的p轨道态密度峰明显左移且吸附能比洁净表面大90 kJ/mol,其余基团表面吸附能无明显变化;SO_2吸附于-OH和-H-OH生成HSO_3基团,吸附能相比于洁净表面较小,可能作为暂态结构;SO_2吸附于-H_2O生成SO_3基团,H_2O断键生成的H基团起主要吸附作用,CaO表面上生成类似Ca(OH)_2的局部结构且吸附能比洁净表面大45 kJ/mol。  相似文献   

15.
A theoretical study of the NaC3+ and NaC3H+ systems has been carried out. Predictions have been made for some of the molecular properties, which could help in their possible experimental detection. The predicted global minimum for NaC3+ is the linear isomer 1s (1Σ). The lowest-lying triplet state is a three-membered ring 3t (3B2), lying about 27.1 kcal/mol higher in energy than the predicted global minimum at the G2(P) level. In the case of NaC3H+, there are two isomers that lie close in energy: a linear species, 1d (2Π), and a three-membered ring, 4d (2A′). The most reliable levels of theory employed predict that 1d (2Π) is the global minimum, whereas 4d (2A′) is predicted to lie 5.3 kcal/mol higher in energy at the G2(P) level. In any case it seems that both structures could be accessible to experimental detection. Low ionization potential and high proton affinities are obtained for the most stable NaC3 isomers. Therefore, if present in the interstellar medium, NaC3 should be easily ionized and would react quite easily to give the protonated species.  相似文献   

16.
The reaction of HOCl + HCl → Cl2 + H2O in the presence of chlorine anion Cl has been studied using ab initio methods. The overall exothermicity is 15.5 kcal mol−1 and this reaction has been shown to have a high activation barrier of 46.5 kcal mol−1. Cl is found to catalyze the reaction via the formation of HOCl·Cl, ClH·HOCl·Cl and Cl·H2) intermediate ion-molecule complexes or by interacting with a concerted four-center transition state of the reaction of HOCl + HCl.  相似文献   

17.
H. Naïli  W. Rekik  T. Bataille  T. Mhiri 《Polyhedron》2006,25(18):3543-3554
A new organically templated metal sulfate has been synthesized and characterized. At room temperature, dabcodiium hexaaquacopper(II) bis(sulfate), (C6H14N2)[Cu(H2O)6](SO4)2 crystallizes in the monoclinic symmetry (space group P21/n) with the following unit cell parameters: a = 6.9533(2), b = 12.5568(2), c = 9.9434(2) Å; β = 90.526(1)° and Z = 2. Its crystal structure is built from isolated [Cu(H2O)6]2+, and disordered ions linked together by a hydrogen-bonding network. The title compound undergoes a reversible phase transition of the first-order type at 265.7/281.8 K on heating–cooling runs. Below the phase transition temperature, the structure is fully ordered.  相似文献   

18.
The mechanism of second H2O formation in fully reduced cytochrome c oxidase is examined by sequential additions of one electron and two protons to a [Fe(IV)O, Cu(II)] compound II, which is the final intermediate of first H2O formation. It is found that the addition of one electron induces the concerted proton–electron transfer from the CuB to FeO moieties with no energy barriers. The H2O molecule coordinating to the Cu atom is a key molecule for the proton transfer from the CuB moiety to the FeO and/or Fe–OH moieties. It is also found from the results in previous and the present works that one can realize the reduction process of dioxygen by fully reduced cytochrome c oxidase.  相似文献   

19.
The dinuclear complex [Co2(μ-OAc)2(OAc)2(μ-H2O)(phen)2] has been prepared and its structure was determined. The compound crystallizes in the monoclinic space group P2(1)/c. The Co–Co distance is 3.574 Å and is similar to the Fe–Fe distance in the reduced methane monooxygenase hydroxylase. The electronic and IR spectra of the complex confirm octahedral coordination of the cobalt atoms and formation of strong O–HO hydrogen bonds in the solid state. The dependence of the magnetic susceptibility of the complex on temperature indicates an antiferromagnetic interaction, the value of the isotropic exchange parameter J was estimated to be −2.1 cm−1. The 1H NMR spectra show that in organic solvents the structure of compound is the same as in the solid state, however, in water solution the complex dissociates giving compounds with different Co:phen ratios.  相似文献   

20.
Two novel hydrogen maleato (HL) bridged Cu(II) complexes 1[Cu(phen)Cl(HL)2/2] 1 and 1[Cu(phen)(NO3)(HL)2/2] 2 were obtained from reactions of 1,10-phenanthroline, maleic acid with CuCl2·2H2O and Cu(NO3)2·3H2O, respectively, in CH3OH/H2O (1:1 v/v) at pH=2.0 and the crystal structures were determined by single crystal X-ray diffraction methods. Both complexes crystallize isostructurally in the monoclinic space group P21/n with cell dimensions: 1 a=8.639(2) Å, b=15.614(3) Å, c=11.326(2) Å, β=94.67(3)°, Z=4, Dcalc=1.720 g/cm3 and 2 a=8.544(1) Å, b=15.517(2) Å, c=12.160(1) Å, β=90.84(8)°, Z=4, Dcalc=1.734 g/cm3. In both complexes, the square pyramidally coordinated Cu atoms are bridged by hydrogen maleato ligands into 1D chains with the coordinating phen ligands parallel on one side. Interdigitation of the chelating phen ligands of two neighbouring chains via π–π stacking interactions forms supramolecular double chains, which are then arranged in the crystal structures according to pseudo 1D close packing patterns. Both complexes exhibit similar paramagnetic behavior obeying Curie–Weiss laws χm(T−θ)=0.414 cm3 mol−1 K with the Weiss constants θ=−1.45, −1.0 K for 1 and 2, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号