首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
A model thermodynamic function describing the energy of solvation of organic substances in extremely dilute solutions has been proposed for the first time. Using this function, the chemical potentials of interaction of solute particles for extremely dilute solutions were calculated and compared with experimental data for about 180 systems. Solutions of polar and nonpolar associated and nonassociated substances in the liquid and gas phases were considered. The calculated and experimental partial enthalpies of solvation in cyclohexane for 40 organic compounds under normal conditions were compared. The feasibility of this approach for studying the microstructures and properties of extremely dilute solutions has been shown.  相似文献   

2.
An analysis is provided of the subnanosecond dynamic solvation of ionic liquids in particular and ionic solutions in general. It is our hypothesis that solvation relaxation in ionic fluids, in the nonglassy and nonsupercooled regimes, can be understood rather simply in terms of the dielectric spectra of the solvent. This idea is suggested by the comparison of imidazolium ionic liquids with their pure organic counterpart, butylimidazole (J. Phys. Chem. B 2004, 108, 10245-10255). It is borne out by a calculation of the solvation correlation time from frequency dependent dielectric data for the ionic liquid, ethylammonium nitrate, and for the electrolyte solution of methanol and sodium perchlorate. Very good agreement is obtained between these theoretically calculated solvation relaxation functions and those obtained from fluorescence upconversion spectroscopy. Our comparisons suggest that translational motion of ions may not be the predominant factor in short-time solvation of ionic fluids and that many tools and ideas about solvation dynamics in polar solvents can be adapted to ionic fluids.  相似文献   

3.
4.
The polymerization of tetrahydrofuran was studied with regard to the presence of polar and nonpolar compounds, or well-solvating and poorly solvating compounds, respectively. Tetrahydrofuran is highly nucleophilic, with a high solvation ability. It is capable of activating the native initiator itself and can be polymerized without any added cocatalyst. The addition of water to the tetrahydrofuran–initiator system decreases the polymerization rate. However, the dependence of the polymerization rate on the concentration of water in the dilute tetrahydrofuran runs through a maximum. The reaction rate is a function of the position of an equilibrium established during the solvation of initiator. All components of the system take part in the establishment of equilibrium.  相似文献   

5.
A mode-coupling treatment of polar solvation dynamics in supercritical fluids is presented. The equilibrium solvation time correlation function for the solute fluctuating transition frequency is obtained from the mode-coupling theory method and from molecular-dynamics simulations. The theory is shown to be in good agreement with the simulation. The solvation time correlation function exhibits three distinct time scales, with rapid initial decay, followed by a recurrence at intermediate times, and a slowly decaying long-time tail. Our theoretical analysis shows that the short-time decay arises from the coupling of the solute energy gap to the solvent polarization modes, the recurrence at intermediate times is due to the energy modes, while the slow long-time decay reflects the coupling to the number density modes.  相似文献   

6.
Donor-substituted triarylboranes are investigated by femtosecond absorption spectroscopy to study the influence of molecular symmetry on solvation. In solvents of varying polarity and differently fast solvation response, the solvation dynamics of a highly symmetric triple carbazole-substituted triarylborane (TCB) is compared to a single carbazole-substituted triarylborane (CB). The decomposition of the transient absorption spectra allows us to measure the solvation time by means of the time-dependent solvatochromic shift of the excited-state absorption (ESA) and the stimulated emission (SE). For all polar solvents under study we find an accelerated solvation process for TCB compared to the less symmetric CB. The difference is particularly large for solvents with a slow response. In order to explain these findings we propose that the electronic excitation is mobile in the symmetric molecule and can change between the three carbazole chromophores probably by a hopping mechanism. The excited-state dipole moment of TCB can thereby respond to the solvent relaxation and changes its direction according to the local field of the solvation shell. Thus, in a symmetric solute the possibility of an intramolecular charge delocalization over equivalent sites accelerates the approach of the minimum-energy configuration.  相似文献   

7.
In this work, we develop a simple potential model for polar molecules which represents effectively and accurately the thermodynamics of dilute gases. This potential models dipolar interactions whose nonpolar part is either spherical, as in Stockmayer (SM) molecules, or diatomic, as for 2-center Lennard-Jones molecules (2CLJ). Predictions of the second virial coefficient for SM and polar 2CLJ fluids for various dipole moments and elongations agree very well with results of recent numerical calculations by C. Vega and co-workers (Phys. Chem. Chem Phys. 2002, 4, 3000). The model is used to predict the critical temperature of Stockmayer fluids for variable dipole moment and is applied to HCl as an example of a real polar molecule.  相似文献   

8.
The role of solute-solvent and solvent-solvent interaction on the preferential solvation characteristics of 2,6-diaminoanthraquinone (DAAQ) has been analysed by monitoring the optical absorption and fluorescence emission spectra. Binary mixtures consist of dimethylformamide (DMF)-ethanol (EtOH), DMF-dimelthylsulfoxide (DMSO), benzene (BZ)-DMF and acetonitrile (ACN)-DMF. The optical absorption spectra maximum and emission spectra maximum of DAAQ show the changes with varying the solvents and change in the composition in the case of binary mixtures. Non-ideal solvation characteristics are observed in all binary mixtures. It is found that at certain concentrations two mixed solvents interact to form a common structure with a nu(12) (wave number in cm(-1)) value not always intermediate (nu(1) and nu(2)) between the values of the solvents mixed. Synergistic effect is observed in the case of DMF-EtOH mixtures. The preferential solvation parameters local mole fraction X(2)(L), solvation index delta(S2), exchange constant K(12) are calculated in all binary mixtures expect in the case of DMF-BZ mixture and DMF-EtOH mixture in the ground state. We have also monitored excitation wavelength effect on the probe molecule in aprotic polar and protic polar solvents.  相似文献   

9.
A study of the dynamical molecular structure of a dilute polar fluid is reported, in which 13C spin-lattice relaxation times of decanol in deuterated cyclohexane are presented for the individual carbon atoms, and the results are discussed in the context of viscosity data of decanol in alkane systems. The two techniques provide complementary information about the mobility of the alcohol chains and the onset of multimer formation, which is also pertinent to the dynamics of electron solvation in the same systems.  相似文献   

10.
In this paper, we present the theory and implementation of a nonequilibrium solvation model for the symmetry-adapted cluster (SAC) and symmetry-adapted cluster-configuration interaction (SAC-CI) method in the polarizable continuum model. For nonequilibrium solvation, we adopted the Pekar partition scheme in which solvent charges are divided into dynamical and inertial components. With this nonequilibrium solvation scheme, a vertical transition from an initial state to a final state may be described as follows: the initial state is described by equilibrium solvation, while in the final state, the inertial component remains in the solvation for the initial state; the dynamical component will be calculated self-consistently for the final state. The present method was applied to the vertical photoemission and absorption of s-trans acrolein and methylenecyclopropene. The effect of nonequilibrium solvation was significant for a polar solvent.  相似文献   

11.
The intramolecular electron-transfer reaction in crystal violet lactone in polar aprotic solvents is studied with femtosecond transient absorption spectroscopy. The initially excited charge transfer state (1)CT A is rapidly converted into a highly polar charge transfer state (1)CT B. This ultrafast electron transfer is seen as a solvent-dependent dual fluorescence in steady-state spectra. We find that the electron-transfer process can be followed by a change from a double-peaked transient absorption spectrum to a single-peak one in the low picosecond range. The transient absorption kinetic curves are multiexponential, and the fitted time constants are solvent dependent but do not reproduce the known solvation times. For 6-dimethylaminophthalide, the optically active constituent of crystal violet lactone, only a small temporal evolution of the spectra is found. To explain these findings, we present a model that invokes a time-dependent electron-transfer rate. The rate is determined by the instantaneous separation of the two charge-transfer states. Because of their differing dipole moments, they are dynamically lowered to a different extent by the solvation. When they temporarily become isoenergetic, equal forward and backward transfer rates are reached. The intrinsic electron-transfer ( (1)CT A --> (1)CT B) reaction is probably as fast as that in the structurally analogous malachite green lactone (on the 100 fs time scale). The key element for the dynamics is therefore its control by the solvent, which changes the relative energetics of the two states during the solvation process. With further stabilization of the more polar state, the final equilibrium in state population is reached.  相似文献   

12.
用紫外-可见吸收光谱和荧光光谱方法研究了Cu2+分别与稀溶液、分散液和薄膜三种体系中的聚3-己基噻吩(P3HT)的相互作用. 结果表明, P3HT的相形态对其相互作用有重要影响. 在四氢呋喃的稀溶液中, P3HT与Cu2+的溶剂化程度都很高, 它们之间几乎不存在化学作用; 在分散液中, P3HT形成聚集的颗粒, Cu2+的加入产生较弱的氧化掺杂, Cu2+部分进入到分散颗粒中; 在P3HT的薄膜中, Cu2+使链的共轭长度变短, 引起光吸收蓝移.  相似文献   

13.
We present a Ginzburg-Landau theory of ion-induced nucleation in a gas phase of polar one-component fluids, where a liquid droplet grows with an ion at its center. By calculating the density profile around an ion, we show that the solvation free energy is larger in gas than in liquid at the same temperature on the coexistence curve. This difference much reduces the nucleation barrier in a metastable gas.  相似文献   

14.
A theoretical model of the localized excess electron in dilute ionic solutions is presented. The model is based on the ion-pair theory of ionic solutions. The giant quasi-dipoles built of separated cation-anion pairs have been considered as electron traps. The statistical distribution of the depth of the electron traps and the optical absorption spectrum of the localized electron have been calculated. The trap distribution results from the statistical distribution of the distances separating two ionic partners of opposite charge and depends on the solvation degree of the ions. Numerical calculations of the electron absorption spectra have been performed for dilute NaX and LiX solutions (X stands for single-charged anion) in tetrahydrofuran at room temperature.  相似文献   

15.
A theoretical model is proposed to describe the influence of the concentration of a polar solvent and the temperature of a solution on the electronic spectra of a polar solute in a binary solvent mixture. It is shown that the interaction between molecules of the polar solvent in the first solvation shell makes the significant contribution to the formation of absorption and fluorescence bands of the solute. An experimental study of solvatochromic and thermochromic shifts of steady-state fluorescence spectra of 3-amino-N-methylphthalimide in decalin--propanol mixture for different values of propanol mole fraction is carried out. Good qualitative agreement between the experimental data and calculation results is observed.  相似文献   

16.
Push-pull substituted fluorenes are considered for use as dynamic solvation probes in polynucleotides. Their fluorescence band is predicted (by simulations) to show weak spectral oscillations on the subpicosecond time scale depending on the nucleotide sequence. The oscillations reflect the local far-infrared spectrum of the environment around the probe molecule. A connection is provided by the continuum theory of polar solvation which, however, neglects molecular aspects. We examine the latter using acetonitrile solution as a test case. A collective librational solvent mode at 100 cm(-1) is observed with 2-amino-7-nitrofluorene, 2-dimethylamino-7-nitrofluorene, 2-hydroxy-7-nitrofluorene, and its 2'-deoxyriboside. Different strengths of the oscillation indicate that rotational friction of nearby acetonitrile molecules depends on the solute structure or that H bonding is involved in launching the librational coherence. Polar solvation in methanol is used for comparison. With hydroxynitrofluorenes, the observation window is limited by intersystem crossing for which rates are reported. A prominent excited-state absorption band of nitrofluorenes at 430 nm can be used to monitor polar solvation. Structural and electronic relaxation pathways are discussed with the help of quantum chemical calculations.  相似文献   

17.
Using a scanning force microscope, adhesion forces have been measured between carboxylic acid terminated self-assembled monolayers in different nonpolar solvents or in two-component liquid mixtures consisting of a polar solvent (ethyl acetate or acetone) in heptane. The adhesion forces measured in pure acetone and ethyl acetate were small (0.24 nN) but increased logarithmically as the concentration of the polar solvent decreased to reach a maximum value (2.77 nN), equal to that measured in pure heptane, and for lower concentrations of polar solvent, the adhesion force remained constant. This behavior is identical to that observed for association constants measured for the formation of 1:1 H-bonded complexes between dilute solutes in solvent mixtures. The transition between the solvent-dependent and -independent regimes occurs at a polar solvent concentration corresponding to 1/K(S), where K(S) is the equilibrium constant for solvation of a carboxylic acid by the polar solvent in heptane. A simple model, in which the solvation of the carboxylic acid groups may be estimated by considering the concentration and polarity of functional groups in the liquid, accurately predicts values of K(S) that were found to correlate very well with the observed solvent-dependence of the adhesion force. Friction-load relationships were measured using friction-force microscopy. In pure acetone and ethyl acetate, a linear friction-load relationship was observed, in agreement with Amontons' law. However, as the concentration of polar solvent was reduced, a nonlinear relationship was observed and the friction-load relationship was found to fit the Derjaguin-Müller-Toporov (DMT) model for single asperity contacts. For pure heptane and a range of other nonpolar liquids with identical dielectric constants, the friction-load relationship was described by DMT mechanics. Exceptionally, for perfluorodecalin, Johnson-Kendall-Roberts mechanics was observed. These observations may be rationalized by treating the friction force as the sum of load-dependent and shear contributions. Under conditions of low adhesion, where the carboxylic acid surface is solvated by polar solvent molecules, the shear term is negligible and the sliding interaction is dominated by load-dependent friction. As the degree of solvation of the carboxylic acid groups decreases and the adhesion force increases, the shear friction contribution increases, dominating the interaction for media in which the adhesion force is greater than ca. 0.6 nN.  相似文献   

18.
We calculate the ion distributions around an interface in fluid mixtures of highly polar and less polar fluids (water and oil) for two and three ion species. We take into account the solvation and image interactions between ions and solvent. We show that hydrophilic and hydrophobic ions tend to undergo a microphase separation at an interface, giving rise to an enlarged electric double layer. We also derive a general expression for the surface tension of electrolyte systems, which contains a negative electrostatic contribution proportional to the square root of the bulk salt density. The amplitude of this square-root term is small for hydrophilic ion pairs but is much increased for hydrophilic and hydrophobic ion pairs. For three ion species, including hydrophilic and hydrophobic ions, we calculate the ion distributions to explain those obtained by x-ray reflectivity measurements.  相似文献   

19.
The balance between electrostatic and non-electrostatic enthalpic contributions to the free energy of solvation of a series of neutral solutes in water and n-octanol is examined by means of continuum solvation calculations based on the Miertus–Scrocco–Tomasi (MST) method. The experimental data indicate that the solvation enthalpy of hydrocarbons is very similar in water and n-octanol, and that the enthalpic contribution measured for polar compounds is larger in water than in n-octanol. According to MST calculations, the different magnitude of the solvation enthalpy found for polar compounds in the two solvents can be largely attributed to the electrostatic contribution. Moreover, the results point out that there is close resemblance between the non-electrostatic components for both hydrocarbons and polar compounds in the two solvents. Finally, the results show the power of current continuum models like MST to dissect the total free energy of solvation in entropic and enthalpic contributions and suggest that new refinements of continuum solvation models should include not only the fitting to solvation free energies, but also their enthalpic components.  相似文献   

20.
Carbonaceous materials with some degree of flexibility in their physical structure can expand or contract under the influence of the forces exerted by adsorbed molecules. To gain insight into how adsorption of non-polar and polar fluids could deform a carbon solid, we present GCMC simulations of sub- and supercritical adsorption of methane and methanol in slit-shaped pores whose walls are made of graphene layers. Our extensive simulation study shows that there is a strong correlation between solvation pressure and solid deformation, and that the expansion or contraction of the pore strongly depends on adsorbate loading, temperature and pore size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号