首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Optical properties of Ho3+-doped Lu3Al5O12 and (Lu,Y)3Al5O12 crystals were investigated and compared. Substitution of Y for Lu in the host garnet Lu3Al5O12 results in broad absorption and emission spectra, and improvements in the laser behavior of Ho3+. Pumped by Tm:fiber laser, a maximum output power of 5.02 and 5.73 W of Ho-doped Lu3Al5O12 and (Lu,Y)3Al5O12 have been obtained, respectively. The center lasing wavelength are 2124.5 and 2123.0 nm for Lu3Al5O12 and (Lu,Y)3Al5O12, respectively.  相似文献   

2.
The luminescence spectra of single-crystal films and bulk crystals of yttrium-aluminum garnet Y3Al5O12 and Ce3+-activated Y3Al5O12 were investigated. It was shown that the room-temperature luminescence intensity of the Ce3+-free single-crystal Y3Al5O12 film was considerably lower than that of the bulk crystals, while the luminescence intensity of the Ce3+ ions in the Y3Al5O12:Ce films was considerably higher than that one for the corresponding bulk crystal.  相似文献   

3.
The present study analyzes the morphological transformations of reaction products i.e., MgO, MgAl2O4 occurring during the reaction between SiO2 and Al-Mg alloy in Al-Mg-SiO2 composite processed by the liquid metallurgy technique. Different phases of platelet and hexagonal morphologies are detected and their composition analysis by EDS has confirmed them as being transition phases existing between MgO, MgAl2O4 and Al2O3. This study has also revealed the gradual transformation of (i) MgO needles to octahedral MgAl2O4 through Mg-Al-Si-O and Mg-Al-O transition phases having platelet morphologies and (ii) MgAl2O4 to Al2O3 through hexagonal transition phases on holding of Al-5Mg-SiO2 and Al-1Mg-SiO2 composites respectively at 1023K. Fully developed α-Al2O3 crystals are not observed under the present experimental conditions, wherein the Mg content is well above the equilibrium Mg content required for the formation of stable Al2O3 (<0.05 wt. %). PACS 05.70.Np  相似文献   

4.
The effect of compensator on optical properties of Ca2Al2SiO7:Eu3+ is systematically investigated by the X-ray powder diffraction, photo-luminescence (PL) properties and lifetime. It is obviously observed that the PL intensity of Eu3+ under 394 nm excitation increases in the order of Ca1.86Eu0.14Al2SiO7 (CAS), Ca1.72Na0.14Eu0.14Al2SiO7 (CASNa) and Ca1.86Eu0.14Al2.14Si0.86O7 (CASAl), the intensity of Eu3+ are 100%, 134%, 184%, and the lifetime of Eu3+ are 0.75 ms, 1.28 ms and 1.39 ms, respectively. A charge compensation model is proposed to explain the changes in the emission intensity and lifetime of Eu3+ in Ca2Al2SiO7 with different compensation methods. PACS 78.55.-m; 61.72.Ji; 61.43.Gt; 42.70.-a; 74.62.Dh  相似文献   

5.
In this study, FeNi3/Al2O3 core-shell nanocomposites, where individual FeNi3 nanoparticles were coated with a thin layer of alumina, were fabricated by a modified sol-gel method. Several physical characterizations were performed on the samples of FeNi3/Al2O3 nanocomposites with different thickness of Al2O3 shell. The encapsulation of FeNi3 nanoparticles with alumina stops FeNi3 agglomeration during heat treatment, and prevents interaction among the closely spaced magnetic FeNi3 nanoparticles. The Al2O3 insulating shell improves the soft magnetic properties of FeNi3. The study of the complex permeability of the samples shows that the real part μ’ of the permeability of the sample with Al molar content of 20% (Al/(Fe+Ni)) is as high as 12, and independent of frequency up to at least 1 GHz. The tunneling magnetoresistance arising from the presence of the Al2O3 shell have also been studied.  相似文献   

6.
The ZnSe/Al2O3 nanocomposite films synthesized by laser evaporation followed by heat treatment are studied. X-ray diffraction and electron-microscopic investigations of the as-deposited films demonstrate the presence of ZnSe crystallites in an Al2O3 amorphous matrix. Annealing changes the structures of ZnSe and Al2O3, increases the ZnSe crystallite size, and causes the appearance of the ZnSeO4 phase. The presence of aluminum oxide layers decreases the phase transformation temperature of zinc selenide.  相似文献   

7.
In this paper, a facile co-precipitation process for preparing mono-dispersed core–shell structure nanoparticles is reported. The 110 nm SiO2 cores coated with an yttrium aluminum garnet (Y3Al5O12) layer doped with Er3+ were synthesized and the influence of the concentration ratio of [urea]/[metal ions] on the final product was investigated. The structure and morphology of samples were characterized by the X-ray powder diffraction, Fourier transform IR spectroscopy and transmission electron microscopy, respectively. The results indicate that a layer of well-crystallized garnet Y3Al5O12:Er3+ were successfully coated on the silica particles with the thickness of 20 nm. The near infrared and upconversion luminescent spectra of the SiO2@Y3Al5O12:Er3+ powders further confirm that a Y3Al5O12:Er3+ coating layer has formed on the surface of silica spherical particles.  相似文献   

8.
The layered LiNi0.5Mn0.47Al0.03O2 was synthesized by wet chemical method and characterized by X-ray diffraction and analysis of magnetic measurements. The powders adopted the α-NaFeO2 structure. This substitution of Al for Mn promotes the formation of Li(Ni0.472+Ni0.033+Mn0.474+Al0.033+)O2 structures and induces an increase in the average oxidation state of Ni, thereby leading to the shrinkage of the lattice unit cell. The concentration of antisite defects in which Ni2+ occupies the (3a) Li lattice sites in the Wyckoff notation has been estimated from the ferromagnetic Ni2+(3a)–Mn4+(3b) pairing observed below 140 K. The substitution of 3% Al for Mn reduces the amount of antisite defects from 7% to 6.4–6.5%. The analysis of the magnetic properties in the paramagnetic phase in the framework of the Curie–Weiss law agrees well with the combination of Ni2+ (S = 1), Ni3+ (S = 1/2) and Mn4+ (S = 3/2) spin-only values. Delithiation has been made by the use of K2S2O8. According to this process, known to be softer than the electrochemical one, the nickel ions in the (3b) sites are converted into Ni4+ in the high spin configuration, while Ni2+(3a)–Mn4+(3b) ferromagnetic pairs remain, as the Li+(3b) ions linked to the Ni2+(3a) ions in the antisite defects are not removed. The results show that the antisite defect is surrounded by Mn4+ ions, implying the nonuniform distribution of the cations in agreement with previous NMR and neutron experiments.  相似文献   

9.
The structural transformations at different stages of the preparation of oxide FeAl/Al2O3 nanocomposite by mechanosynthesis with the use of a preliminarily activated FeAl precursor are studied by means of transmission electron microscopy, X-ray diffraction and Mössbauer spectroscopy.  相似文献   

10.
A Cu2+-doped single crystal of catena-trans-bis(N-(2-hydroxyethyl)-ethylenediamine) zinc(II)-tetra-m-cyanopaladate(II) [ZnPd(CN)4(C4H12N2O2)] complex has been investigated by electron paramagnetic resonance (EPR) technique at room temperature. EPR spectra indicate that Cu2+ ions substitute for magnetically equivalent Zn2+ ions and form octahedral complexes in [ZnPd(CN)4(C4H12N2O2)] hosts. The crystal field affecting the Cu2+ ion is nearly axial. The optical absorption studies show two bands at 322 nm (30864 cm−1) and 634 nm (15337 cm−1) which confirm the axial symmetry. The spin Hamiltonian parameters and the relevant wave function are determined.  相似文献   

11.
Dynamic compression has been used to synthesize liquid metallic hydrogen at 140 GPa (1.4 million bar) and experimental data and theory predict Al2O3 might be a metallic glass at ∼ 300 GPa. The mechanism of metallization in both cases is probably a Mott-like transition. The strength of sapphire causes shock dissipation to be split differently in the strong solid and soft fluid. Once the 4.5-eV H-H and Al-O bonds are broken at sufficiently high pressures in liquid H2 and in sapphire (single-crystal Al2O3), electrons are delocalized, which leads to formation of energy bands in fluid H and probably in amorphous Al2O3. The high strength of sapphire causes shock dissipation to be absorbed primarily in entropy up to ∼400 GPa, which also causes the 300-K isotherm and Hugoniot to be virtually coincident in this pressure range. Above ∼400 GPa shock dissipation must go primarily into temperature, which is observed experimentally as a rapid increase in shock pressure above ∼400 GPa. The metallization of glassy Al2O3, if verified, is expected to be general in strong oxide insulators. Implications for Super Earths are discussed.  相似文献   

12.
The processes of excitation energy transfer in phosphors based on single-crystal Tb3Al5O12:Ce (TbAG:Ce) and Tb3Al5O12:Ce,Eu (TbAG:Ce,Eu) garnet films have been investigated. These films are considered to be promising materials for screens for X-ray images and luminescence converters of blue LED radiation. The conditions for excitation energy transfer from the matrix (Tb3+ cations) to Ce3+ and Eu3+ ions in TbAG:Ce and TbAG:Ce,Eu phosphors have been analyzed in detail. It is established that a cascade process of excitation energy transfer from Tb3+ ions to Ce3+ and Eu3+ ions and from Ce3+ ions to Eu3+ ions is implemented in TbAG:Ce,Eu via dipole-dipole interaction and through the Tb3+ cation sublattice.  相似文献   

13.
Glassy LiPO3/crystalline Al2O3 and glassy LiPO3/crystalline ZrO2 (0–12.5 vol.% of oxide fillers) composite solid electrolytes have been prepared by glass matrix softening. Their thermal and transport properties have been investigated by differential scanning calorimetry (DSC) and impedance spectroscopy methods. The addition of ZrO2 leads to a decrease in the crystallization temperature of LiPO3 glass. It was found that the conductivity behavior depends on the nature of the dispersed addition. In the case of the Al2O3 addition, the increase in the electrical conductivity is observed. The ionic conductivity of the LiPO3/10% Al2O3 composite reaches 5.8 × 10?8 S/cm at room temperature. In contrast, the conductivity in the LiPO3/ZrO2 composite system decreases.  相似文献   

14.
This paper reports on the spectroscopic properties and energy transfer analysis of Tm3+-doped BaF2-Ga2O3-GeO2-La2O3 glasses with different Tm2O3 doping concentrations (0.2, 0.5, 2.0, 2.5, 3.0, 3.5, 3.5, 4.0 wt%). Mid-IR fluorescence intensities in the range of 1,300 nm−2,200 nm have been measured when excited under an 808 nm LD for all the samples with the same pump power. Energy level structure and Judd-Ofelt parameters have been calculated based on the absorption spectra of Tm3+, cross-relaxation rates and multi-phonon relaxation rates have been estimated with different Tm2O3 doping concentrations. The maximum fluorescence intensity at around 1.8 μm has been obtained in Tm2O3-3 wt% sample and the maximum value of calculated stimulated emission cross-section of Tm3+ in this sample is about 0.48 × 10−20 cm2 at 1,793 nm, and there is not any crystallization peak in the DSC curve of this sample, which indicate the potential utility of Tm3+-doped BaF2-Ga2O3-GeO2- La2O3 glass for 2.0-μm optical fiber laser.  相似文献   

15.
This is an IR spectroscopic study of the interaction of CO with In2O3 and the nanocomposite In2O3-Au. A mechanism for low-temperature detection of CO on nanocomposite In2O3-Au can be determined from these data. This process includes catalytic oxidation of CO through formation of intermediate complexes involving hydroxyl groups of In2O3.  相似文献   

16.
We study the dynamics of ions produced upon ablation of Al and ceramic Al2O3 targets using nanosecond laser pulses at 193 nm (6.4 eV) as a function of the laser fluence from threshold up to 12 J cm−2. An electrical (Langmuir) probe located at 40 mm from the target surface has been used for determining the ion yield and calculating the kinetic energy distributions. The results for both targets show the existence of a significant amount of ions having kinetic energies >200 eV (≈20% around threshold fluence), and kinetic energies are up to >1.5 keV. The results are related with the existence of direct photonionization processes caused by the photon energy of the laser being higher than the ionization potential of Al (5.98 eV). Comparison of the ion yield when ablating the two types of targets for fluences above threshold to data reported in the literature suggests that the magnitude of the yield and its threshold are parameters depending on the thermal properties of the target rather than on the laser wavelength. Around threshold, the different behavior of ion yield when ablating Al and Al2O3 targets suggests that the threshold for neutral aluminium and ion species in the case of ablation of the Al2O3 target must be similar.  相似文献   

17.
CoFe2O4 (CFO) thin film with highly (111)-preferential orientation was first deposited on the silicon substrate by a pulsed-laser deposition, and then Pb(Zr0.52Ti0.48)O3 (PZT) layers were deposited with different oxygen pressures to form the bilayer CFO/PZT nanocomposite thin films. X-ray diffraction showed that the PZT preferential orientation was strongly dependant on the oxygen pressure. The smooth film surface was obtained after depositing the CFO and PZT layers. The bilayer thin films exhibit good ferromagnetic and ferroelectric properties, and a low leakage current density of 0.004 μA/cm2 at 50 kV/cm. The leakage current density curves show loops for the electric polarized field when the electric field reverses. PACS 77.84.Lf; 75.80+q; 81.05.Zx; 81.15.Fg  相似文献   

18.
Hierarchical structured ZnFe2O4@reduced graphite oxide@TiO2 (ZnFe2O4@RGO@TiO2) nanocomposite was prepared by an electrostatic layer-by-layer route, which played a synthetic effect of Fenton oxidation of ZnFe2O4 and photocatalytic oxidation of TiO2 to degrade fulvic acid (FA) solution under visible-light irradiation. In this method, RGO, as the middle layer, can effectively promote the photo-induced electron flow between the ZnFe2O4 and TiO2 and further improve the efficiency of the photo-Fenton oxidation. The influencing factors on photo-Fenton oxidation, including solution pH, catalyst, and H2O2 dosage, have also been investigated. The results illustrated that the ternary composite presented the enhanced catalytic performance. Under visible light irradiation, the degradation efficiency of the sample on the FA solution can reach 95.4% within 3 h. In addition, the catalyst exhibited superior stability and reusability, and its degradation efficiency was still up to 90% after 5 cycles. Therefore, the composite will be a kind of efficient photocatalyst and had a promising application for visible-light driven destruction of organic pollutants.  相似文献   

19.
A new series of nanocomposite polymer electrolyte (NCPE) system comprising of polyethylene oxide (PEO) and polypropylene glycol (PPG) as blended polymer host, zinc trifluoromethanesulfonate [Zn(CF3SO3)2] as dopant salt and nanocrystalline alumina [Al2O3] as filler was prepared by solution casting technique. The present system consisting of five different compositions of 87.5 wt% (PEO:PPG)–12.5 wt% Zn(CF3SO3)2 + x wt% Al2O3 [where x = 1, 3, 5, 7 and 9, respectively] has been thoroughly characterized by various analytical techniques such as electrical impedance spectroscopy, X-ray diffraction (XRD) studies, differential scanning calorimetry (DSC), scanning electron microscopic (SEM) analysis and linear sweep voltammetry (LSV). The maximum room temperature ionic conductivity exhibited by the NCPE was found to be 2.1 × 10?4 S cm?1 for 3 wt% loading of Al2O3 which is an order higher than that of the optimized filler-free zinc salt doped polymer electrolyte system at 298 K. The evidence of a decrease in the degree of crystallinity responsible for the enhanced conductivity was revealed by the XRD data and further confirmed by DSC and SEM results. Moreover, the electrochemical stability window of the highly conducting electrolyte matrix has been experimentally determined by linear sweep voltammetry and found to be 3.6 V which is fairly adequate for the construction of zinc primary batteries as well as zinc-based rechargeable batteries at ambient conditions.  相似文献   

20.
Luminescence and scintillation properties of Y3Al5O12:Ce single crystals grown from the melt by the Czochralski and horizontal directed crystallization methods in various gas media and Y3Al5O12:Ce single-crystal films grown by liquid-phase epitaxy from a melt solution based on a PbO-B2O3 flux have been comparatively analyzed. The strong dependence of scintillation properties of Y3Al5O12:Ce single crystals on their growth conditions and concentrations of YAl antisite defects and vacancy defects has been established. Vacancy defects are involved in Ce3+ ion emission excitation as the centers of intrinsic UV luminescence and trapping centers. It has been shown that Y3Al5O12:Ce single-crystal films are characterized by faster scintillation decay kinetics than single crystals and a lower content of slow components in Ce3+ ion luminescence decay during high-energy excitation due to the absence of YAl antisite defects in them and low concentration of vacancy defects. At the same time, the light yield of Y3Al5O12:Ce single-crystal films is comparable to that of single crystals grown by directed crystallization due to the quenching effect of the Pb2+ ion impurity as a flux component and is slightly lower (∼25%) than the light yield of single crystals grown by the Czochralski method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号