首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have implemented first-principles relativistic pseudopotential calculations within general gradient approximation to investigate the structural and electronic properties of quaternary InAs/GaSb superlattices with an InSb or GaAs type of interface. Because of the complexity and low symmetry of the quaternary interfaces, the interface energy and strain in the InAs/GaSb superlattice system have been calculated to determine the equilibrium interface structural parameters. The band structures of InAs/GaSb superlattices with InSb and GaAs interfaces have been calculated with respect to the lattice constant and atomic position relaxations of the superlattice interfaces. The calculation of the relativistic Hartree–Fock pseudopotential in local density approximation has also been performed to verify the calculated band structure results that have been predicted in other empirical theories. The calculated band structures of InAs/GaSb superlattices with different types of interface (InSb or GaAs) have been systematically compared. We find that the virtual–crystal approximation fails to properly describe the quaternary InAs/GaSb superlattice system, and the chemical bonding and ionicity of anion atoms are essential in determining the interface and electronic structures of InAs/GaSb superlattice system.  相似文献   

2.
孙伟峰  郑晓霞 《物理学报》2012,61(11):117301-117301
通过广义梯度近似的第一原理全电子相对论计算, 研究了不同界面类型InAs/GaSb超晶格的界面结构、电子和光吸收特性. 由于四原子界面的复杂性和低对称性, 通过对InAs/GaSb超晶格进行电子总能量和应力最小化来确定弛豫界面的结构参数. 计算了InSb, GaAs型界面和非特殊界面(二者交替)超晶格的能带结构和光吸收谱, 考察了超晶格界面层原子发生弛豫的影响.为了证实能带结构的计算结果, 用局域密度近似和Hartree-Fock泛函的平面波方法进行了计算. 对不同界面类型InAs/GaSb超晶格的能带结构计算结果进行了比较, 发现界面Sb原子的化学键和离子性对InAs/GaSb超晶格的界面结构、 能带结构和光学特性起着至关重要的作用.  相似文献   

3.
Zhaojun Liu 《中国物理 B》2022,31(12):128503-128503
We systematically investigate the influence of InSb interface (IF) engineering on the crystal quality and optical properties of strain-balanced InAs/GaSb type-II superlattices (T2SLs). The type-II superlattice structure is 120 periods InAs (8 ML)/GaSb (6 ML) with different thicknesses of InSb interface grown by molecular beam epitaxy (MBE). The high-resolution x-ray diffraction (XRD) curves display sharp satellite peaks, and the narrow full width at half maximum (FWHM) of the 0th is only 30-39 arcsec. From high-resolution cross-sectional transmission electron microscopy (HRTEM) characterization, the InSb heterointerfaces and the clear spatial separation between the InAs and GaSb layers can be more intuitively distinguished. As the InSb interface thickness increases, the compressive strain increases, and the surface "bright spots" appear to be more apparent from the atomic force microscopy (AFM) results. Also, photoluminescence (PL) measurements verify that, with the increase in the strain, the bandgap of the superlattice narrows. By optimizing the InSb interface, a high-quality crystal with a well-defined surface and interface is obtained with a PL wavelength of 4.78 μ, which can be used for mid-wave infrared (MWIR) detection.  相似文献   

4.
孙伟峰 《物理学报》2012,61(11):117104-117104
利用第一原理平面波赝势法, 对(InAs)1/(GaSb)1超晶格原子链的原子结构、力学特性、电子能带结构、 声子结构和光学特性进行研究, 并结合密度泛函理论数值原子轨道赝势法和非平衡格林函数法计算量子输运特性. 与二维层结构的(InAs)1/(GaSb)1超晶格相比, (InAs)1/(GaSb)1超晶格原子链的能带结构有明显不同, 在某些情况下表现为金属能带特性. 对理想条件下(InAs)1/(GaSb)1 超晶格原子链的力学强度计算表明, 该结构可承受的应变高达 ε=0.19. 通过对声子结构的完整布里渊区分析, 研究了(InAs)1/(GaSb)1超晶格原子链的结构稳定性. 对两端接触电极为Al纳米线的InAs/GaSb超晶格原子链的电子输运特性计算表明, 电导随链长和应变的改变而发生非单调变化.光吸收谱的计算结果表现出在红外波段具有陡峭吸收边, 截止波长随超晶格原子链的结构而变化.预计InAs/GaSb超晶格原子链可应用于红外光电子纳米器件, 通过改变超晶格原子链的结构来调节光电响应波段.  相似文献   

5.
孙伟峰  郑晓霞 《物理学报》2012,61(11):117103-117103
半导体纳米线作为纳米器件的作用区和连接部分具有理想的形状, 把电子运动和原子周期性限制在一维结构当中.通过体材料的已知特性, 有效地选择材料组分使纳米线的低维结构优点更加突出.此外, 还可以通过其他方式来调整纳米线特性, 如控制纳米线直径、晶体学生长方向、结构相、表面晶体学晶面和饱和 度等内部或固有的特性;施加电场、磁场、热场和力场等外部影响. 体材料InAs和GaSb的晶格常数非常相近, 因此InAs/GaSb异质结构晶格失配很小, 可生长成为优良的红外光电子材料.另外, 体材料InAs在二元III---V化合物半导体中具有最低的有效质量, 这使得电子限制在InAs层的InAs/GaSb超晶格具有良好的输运特性. 本文通过第一原理计算研究轴线沿[001]和[111]闪锌矿晶体学方向的 (InAs)1/(GaSb)1超晶格纳米线(下标表示分子或双原子单层的数量) 的结构、电子和力学特性, 以及它们随纳米线直径(线径约为0.5---2.0 nm)的变化规律.另外, 分析了外部施加的应力对电子特性的影响, 考察了不同线径(InAs)1/(GaSb)1超晶格纳米线的电子带边能级随轴向应变的变化, 从而确定超晶格电子能带的带边变形势.  相似文献   

6.
The effect of interface anisotropy on the electronic structure of InAs/GaSb type-II superlattices is exploited in the design of thin-layer superlattices for mid-IR detection threshold. The design is based on a theoretical envelope function model that incorporates the change of anion and cation species across InAs/GaSb interfaces, in particular, across the preferred InSb interface. The model predicts that a given threshold can be reached for a range of superlattice periods with InAs and GaSb layers as thin as a few monolayers. Although the oscillator strengths are predicted to be larger for thinner period superlattices, the absorption coefficients are comparable because of the compensating effect of larger band widths. However, larger intervalence band separations for thinner-period samples should lead to longer minority electron Auger lifetimes and higher operating temperatures in p-type SLs. In addition, the hole masses for thinner-period samples are on the order the free-electron mass rather than being effectively infinite for the wider period samples. Therefore, holes should also contribute to photoresponse. A number of superlattices with periods ranging from 50.6 to 21.2 Å for the 4 μm detection threshold were grown by molecular beam epitaxy based on the model design. Low temperature photoluminescence and photoresponse spectra confirmed that the superlattice band gaps remained constant at 330 meV although the period changed by the factor of 2.5. Overall, the present study points to the importance of interfaces as a tool in the design and growth of thin superlattices for mid-IR detectors for room temperature operation.  相似文献   

7.
In the paper, the comparative analysis of type-II InAs/GaSb SLs deposited on three types of GaSb buffers: homoepitaxial, metamorphic and one grown using the interfacial misfit (IMF) array technique has been presented. The buffer layers as well as superlattices were grown under nominally identical technological conditions. HRXRD investigations proved better crystal quality of the metamorphic material than the IMF-GaSb. FWHMRC were equal to 156 arcsec and 196 arcsec, respectively. The surface roughness of about 1?ML and 4?MLs was obtained using the atomic force microscope for 4.0?μm–metamorphic GaSb and 1.5?μm-IMF-GaSb layers, respectively. The etch pits density for both buffers was similar, 1–2?×?107?cm?2. Superlattice with 500 periods deposited on the homoepitaxial buffer was used as a reference of the best crystal quality. HRTEM images revealed straight InAs/GaSb interfaces with 1?ML thicknesses in this sample. The interfaces in SL deposited on IMF-GaSb buffer were undulated and smeared over 3?MLs. The use of the metamorphic buffer resulted in 1–2?ML straight InAs/GaSb interfaces. The main reason for this is the roughness of IMF-GaSb buffer with mounds on the surface. Based on the obtained results we have demonstrated the advantage of metamorphic approach over IMF growth mode in GaSb/GaAs material system. A two times thicker buffer could be the price worth paying for high quality structures, even when working in the production mode.  相似文献   

8.
Coupled nanostructures have been developed in the InAs/InSb/GaSb materials system in order to extend the emission wavelength further into the infrared, beyond 2 μm. The samples studied consist of a single narrow InAs quantum well grown below a layer of InSb quantum dots in a GaSb matrix, in which the coupling has been altered by changing the thickness of a GaSb spacer layer. The overall transition energy of the combined dot–well system is generally reduced with respect to the dots and well only but the dependence on spacer thickness is more complex than that expected from a simple envelope function model.  相似文献   

9.
In this paper, the impact of growth parameters on the strain relaxation of highly lattice mismatched (11.8%) GaSb grown on GaP substrate by molecular beam epitaxy has been investigated. The surface morphology, misfit dislocation and strain relaxation of the GaSb islands are shown to be highly related to the initial surface treatment, growth rate and temperature. More specifically, Sb-rich surface treatment is shown to promote the formation of Lomer misfit dislocations. Analysis of the misfit dislocation and strain relaxation as functions of the growth temperature and rate led to an optimal growth window for a high quality GaSb epitaxial layer on (001) GaP. With this demonstrated optimized growth, a high mobility (25?500?cm(2)?V (-1)?s(-1) at room temperature) AlSb/InAs heterostructure on a semi-insulating (001) GaP substrate has been achieved.  相似文献   

10.
Detailed calculations of the two dimensional effects in the electronic structure of InAs/GaSb(001)superlattices are presented for the first time. Comparison of the calculated thickness dependence of the superlattice band gap with optical absorption measurements shows that, at the Γ-point, the conduction band edge of InAs lies about 60 meV below the valence band edge of GaSb. Eigenfunctions of the highest light and heavy hole bands, and the lowest two conduction bands exhibit spatially confined nature in the GaSb and InAs regions respectively, thus establishing the two-dimensional nature of these bands. The calculated conduction band effective mass in the plane of the superlattice near the Γ-point is found to be enhanced by a factor of 2.5 over the bulk InAs value and compares very well with the appropriate mass extracted from recent magnetoresistance measurements.  相似文献   

11.
The structural properties of InAs/(GaIn)Sb and (InGa)As/GaSb superlattices (SLs), grown by solid-source molecular-beam epitaxy on GaAs substrates using a strain relaxed GaSb or InAs buffer layer or directly on InAs substrates, were analyzed by high-resolution X-ray diffraction and Raman spectroscopy. The residual strain within the SL was found to depend critically on the type of interface bonds, which can be either InSb- or GaAs-like. Thus, to achieve lattice matching to the buffer layer or substrate by strain compensation within the SL stack, the controlled formation of the interface bonds is vital. On the other hand, minimization of the residual strain is shown to be a prerequisite for achieving a high photoluminescence yield and high responsivities for InAs/(GaIn)Sb SL based IR detectors.  相似文献   

12.
The first fully operational mid-IR (3–5 μm) 256×256 IR-FPA camera system based on a type-II InAs/GaSb short-period superlattice showing an excellent noise equivalent temperature difference below 10 mK and a very uniform performance has been realized. We report on the development and fabrication of the detecor chip, i.e., epitaxy, processing technology and electro-optical characterization of fully integrated InAs/GaSb superlattice focal plane arrays. While the superlattice design employed for the first demonstrator camera yielded a quantum efficiency around 30%, a superlattice structure grown with a thicker active layer and an optimized V/III BEP ratio during growth of the InAs layers exhibits a significant increase in quantum efficiency. Quantitative responsivity measurements reveal a quantum efficiency of about 60% for InAs/GaSb superlattice focal plane arrays after implementing this design improvement. The paper presented there appears in Infrared Photoelectronics, edited by Antoni Rogalski, Eustace L. Dereniak, Fiodor F. Sizov, Proc. SPIE Vol. 5957, 595707 (2005).  相似文献   

13.
We describe how cross-sectional scanning tunneling microscopy (STM) may be used to image the interfacial bonding across the nearly lattice-matched, non-common-atom GaSb/InAs heterojunction with atomic-scale precision. The method, which takes advantage of the length difference between interfacial and bulk bonds, appears equally applicable to AlSb/InAs and suggests how one might recover the complete structure of either heterojunction from atomic-resolution STM data.  相似文献   

14.
The interlayer interband state coupling and the interfacial composition effect in aperiodic InAs/GaSb (001) heterostructures are studied with the scattering theoretic Green's function technique, which can handle interlayer multi-subband interaction under the external bias. The current density calculation shows that the interlayer interband coupled subbands enhance the peak current density by facilitating electron resonant tunneling. The calculated spectral local density of states of a heterostructure predicts that the GaAs interface shifts the energies of the quasibound states to lower energies than those of the InSb interface case, which agrees with experimental results.  相似文献   

15.
The InAs/GaSb type-II superlattice based complementary barrier infrared detector (CBIRD) has already demonstrated very good performance in long-wavelength infrared (LWIR) detection. In this work, we describe results on a modified CBIRD device that incorporates a double tunnel junction contact designed for robust device and focal plane array processing. The new device also exhibited reduced turn-on voltage. We also report results on the quantum dot barrier infrared detector (QD-BIRD). By incorporating self-assembled InSb quantum dots into the InAsSb absorber of the standard nBn detector structure, the QD-BIRD extend the detector cutoff wavelength from ∼4.2 μm to 6 μm, allowing the coverage of the mid-wavelength infrared (MWIR) transmission window. The device has been observed to show infrared response at 225 K.  相似文献   

16.
A type-II InAs/GaSb superlattice (SL) was grown on Te-doped (1 0 0) GaSb substrate by low pressure metal organic chemical vapor deposition (LP-MOCVD). The samples were obtained at different growth temperatures and with different interface layers. By introducing an InAsSb interface layer between InAs and GaSb, a good surface morphology of the superlattice was achieved when the sample growth temperature was around 500–520 °C. The photoluminescence (PL) peak wavelength of the sample was 10.7 μm at 77 K, with FWHM of ∼30 meV.  相似文献   

17.
We report on the development of high performance focal plane arrays for the mid-wavelength infrared spectral range from 3–5 μm (MWIR) on the basis of InAs/GaSb superlattice photodiodes. An investigation on the minority electron diffusion length with a set of six sample ranging from 190 to 1000 superlattice periods confirms that InAs/GaSb superlattice focal plane arrays achieve very high external quantum efficiency. This enabled the fabrication of a range of monospectral MWIR imagers with high spatial and excellent thermal resolution at short integration times. Furthermore, novel dual-color imagers have been developed, which offer advanced functionality due to a simultaneous, pixel-registered detection of two separate spectral channels in the MWIR.  相似文献   

18.
Vertical InAs/GaAs nanowire (NW) heterostructures with a straight InAs segment have been successfully fabricated on Si (111) substrate by using AlGaAs/GaAs buffer layers coupled with a composition grading InGaAs segment. Both the GaAs and InAs segments are not limited by the misfit strain induced critical diameter. The low growth rate of InAs NWs is attributed to the AlGaAs/GaAs buffer layers which dramatically decrease the adatom diffusion contribution to the InAs NW growth. The crystal structure of InAs NW can be tuned from zincblende to wurtzite by controlling its diameter as well as the length of GaAs NWs. This work helps to open up a road for the integration of high-quality III-V NW heterostructures with Si.  相似文献   

19.
It is argued that the (110) interface between group IV and III–V semiconductors are more likely to lend themselves to fabrication via MBE techniques. Results for the electronic structure of Si-GaP(110) superlattice are reported for the first time. Both, interface states and two dimensionally confined states are found. Sensitivity of the energy and charge distribution of these states to the interfacial geometry and the band edge discontinuity is investigated. The results are contrasted with the situation found for lattice matched III–V compound semiconductor systems such as GaAs/AlAs and GaSb/InAs.  相似文献   

20.
We report on the growth of fully relaxed and smooth GaSb layers with reduced density of threading dislocations, deposited on GaAs substrate. We prove that three parameters have to be controlled in order to obtain applicable GaSb buffers with atomically smooth surface: interfacial misfit (IMF), the etch pit density (EPD) and the growth mode.The GaSb/GaAs interfacial misfit array and reduced EPD ≤1.0 × 107 cm?2 were easily obtained using As-flux reduction for 3 min and Sb-soaking surface for 10 s before the GaSb growth initiation. The successive growth of GaSb layer proceeded under the technological conditions described by the wide range of the following parameters: rG ∈ (1.5 ÷ 1.9) Å/s, TG ∈ (400 ÷ 520)°C, V/III ∈ (2.3 ÷ 3.5). Unfortunately, a spiral or 3D growth modes were observed for this material resulting in the surface roughness of 1.1 ÷ 3.0 nm. Two-dimensional growth mode (layer by layer) can only be achieved under the strictly defined conditions. In our case, the best quality 1-μm-thick GaSb buffer layer with atomically smooth surface was obtained for the following set of parameters: rG = 1.5 Å/s, TG = 530 °C, V/III = 2.9. The layer was characterized by the strain relaxation over 99.6%, 90° dislocations array with the average distance of 5.56 nm, EPD ~8.0 × 106 cm?2 and 2D undulated terraces on the surface with roughness of about 1 ML. No mounds were observed. We belive that only thin and smooth GaSb layer with reduced EPD may be applied as the buffer layer in complex device heterostructures. Otherwise, it may cause the device parameters deterioration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号