首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
We report a theoretical investigation on spin-Hall conductance fluctuation of disordered four-terminal devices in the presence of Rashba or/and Dresselhaus spin-orbital interactions in two dimensions. As a function of disorder, the spin-Hall conductance GsH shows ballistic, diffusive, and insulating transport regimes. For given spin-orbit interactions, a universal spin-Hall conductance fluctuation (USCF) is found in the diffusive regime. The value of the USCF depends on the spin-orbit coupling tso but is independent of other system parameters. It is also independent of whether Rashba or Dresselhaus or both spin-orbital interactions are present. When tso is comparable to the hopping energy t, the USCF is a universal number approximately 0.18e/4pi. The distribution of GsH crosses over from a Gaussian distribution in the metallic regime to a non-Gaussian distribution in the insulating regime as the disorder strength is increased.  相似文献   

2.
We derive the ac spin-Hall conductivity sigmasH(omega) of two-dimensional spin-orbit coupled systems interacting with dispersionless phonons of frequency omega0. For the linear Rashba model, we show that the electron-phonon contribution to the spin-vertex corrections breaks the universality of sigmasH(omega) at low frequencies and provides a nontrivial renormalization of the interband resonance. On the contrary, in a generalized Rashba model for which the spin-vertex contributions are absent, the coupling to the phonons enters only through the self-energy, leaving the low-frequency behavior of sigmasH(omega) unaffected by the electron-phonon interaction.  相似文献   

3.
We theoretically investigate the spin-dependent Seebeck effect in an Aharonov–Bohm mesoscopic ring in the presence of both Rashba and Dresselhaus spin–orbit interactions under magnetic flux perpendicular to the ring. We apply the Green's function method to calculate the spin Seebeck coefficient employing the tight-binding Hamiltonian. It is found that the spin Seebeck coefficient is proportional to the slope of the energy-dependent transmission coefficients. We study the strong dependence of spin Seebeck coefficient on the Fermi energy, magnetic flux, strength of spin–orbit coupling, and temperature. Maximum spin Seebeck coefficients can be obtained when the strengths of Rashba and Dresselhaus spin–orbit couplings are slightly different. The spin Seebeck coefficient can be reduced by increasing temperature and disorder.  相似文献   

4.
We show that when a two-dimensional interacting electron gas is submitted to a perpendicular magnetic field, the application of an in-plane electric field E induces a spin current perpendicular to E whose conductivity is quantized. This current can lead to spin accumulation that might be detected by means of optical experiments. The appearance of this intrinsic spin-Hall effect is crucially based on the validity of Kohn's theorem and on the presence of the Zeeman term in the electron Hamiltonian. The possibility of resonant effects in the spin-Hall conductivity due to the combined effect of Rashba and Dresselhaus spin–orbit couplings is discussed.  相似文献   

5.
We extend the Mermin-Wagner theorem to a system of lattice spins which are spin coupled to itinerant and interacting charge carriers. We use the Bogoliubov inequality to rigorously prove that neither (anti-) ferromagnetic nor helical long-range order is possible in one and two dimensions at any finite temperature. Our proof applies to a wide class of models including any form of electron-electron and single-electron interactions that are independent of spin. In the presence of Rashba or Dresselhaus spin-orbit interactions (SOI) magnetic order is not excluded and intimately connected to equilibrium spin currents. However, in the special case when Rashba and Dresselhaus SOIs are tuned to be equal, magnetic order is excluded again. This opens up a new possibility to control magnetism electrically.  相似文献   

6.
宋红州  张平  段素青  赵宪庚 《中国物理》2006,15(12):3019-3025
We have proposed a method to separate Rashba and Dresselhaus spin splittings in semiconductor quantum wells by using the intrinsic Hall effect. It is shown that the interference between Rashba and Dresselhaus terms can deflect the electrons in opposite transverse directions with a change of sign in the macroscopic Hall current, thus providing an alternative way to determine the different contributions to the spin--orbit coupling.  相似文献   

7.
Influence of electrons interaction with longitudinal acoustic phonons on magnetoelectric and spin-related transport effects are investigated. The considered system is a two-dimensional electron gas system with both Rashba and Dresselhaus spin–orbit couplings. The works which have previously been performed in this field, have revealed that the Rashba and Dresselhaus couplings cannot be responsible for spin current in the non-equilibrium regime. In the current Letter, a semiclassical method was employed using the Boltzmann approach and it was shown that the spin current of the system, in general, does not go all the way to zero when the electron–phonon coupling is taken into account. It was also shown that spin accumulation of the system could be influenced by electron–phonon coupling.  相似文献   

8.
We theoretically investigate the electron transport properties in a non-magnetic heterostructure with both Dresselhaus and Rashba spin-orbit interactions. The detailed-numerical results show that (1) the large spin polarization can be achieved due to Dresselhaus and Rashba spin-orbit couplings induced splitting of the resonant level, although the magnetic field is zero in such a structure, (2) the Rashba spin-orbit coupling plays a greater role on the spin polarization than the Dresselhaus spin-orbit interaction does, and (3) the transmission probability and the spin polarization both periodically change with the increase of the well width.  相似文献   

9.
The transport properties of a circular billiard with attached channels, which is an open system, have been studied in the presence of the Dresselhaus and Rashba spin-orbit interactions. It has been shown that this interaction leads to the appearance of additional Fano resonances in the energy dependence of the conductance, the width of which is proportional to the fourth power of the spin-orbit coupling constant.  相似文献   

10.
Xing-Tao An 《Physics letters. A》2008,372(8):1313-1318
Based on the scattering approach, we investigate transport properties of electrons in a one-dimensional waveguide that contains a ferromagnetic/semiconductor/ferromagnetic heterojunction and tunnel barriers in the presence of Rashba and Dresselhaus spin-orbit interactions. We simultaneously consider significant quantum size effects, quantum coherence, Rashba and Dresselhaus spin-orbit interactions and noncollinear magnetizations. It is found that the tunnel barrier plays a decisive role in the transmission coefficient and shot noise of the ballistic spin electron transport through the heterojunction. When the small tunnel barriers are considered, the transport properties of electrons are quite different from those without tunnel barriers.  相似文献   

11.
The spin-flip transport of electron in one-dimensional comb-like waveguide structures is investigated theoretically including the Rashba and Dresselhaus effects. The spin-polarized transmission of electron oscillates with changing the length of stubs and/or electronic momentum, and depends sensitively on electron spin orientation injected from the ferromagnetic source. The spin-flip transmission induced by the Rashba and Dresselhaus effects can only be up to 25% in the case of one stub, and can be enhanced significantly by adding more stubs. The spin-flip transmission induced by the Dresselhaus effect is similar to what induced by the Rashba effect for the one stub case, but is quite different for multi-stub case. The interplay between the Rashba and Dresselhaus effects shortens the period of transmission oscillation and enhances the splitting of the transmission peaks.  相似文献   

12.
Jiating Ni  Bin Chen 《Physics letters. A》2008,372(38):6026-6031
By using the Al'tshuler-Aronov-Spivak (AAS) model, we give the amplitude changing with Rashba spin-orbit interaction (SOI) and Dresselhaus SOI strength. In the first idea 1D square loop (SL), Rashba SOI acts on two sides while Dresselhaus SOI acts on the other two sides. In the second SL, we consume Rashba SOI and Dresselhaus SOI act on four sides simultaneously. This model can be replaced by another one that Rashba SOI and Dresselhaus SOI act on every side independently, and each side is twice long. We theoretically illustrate the influence of the Dresselhaus SOI on node position and number. To explain the “half oscillation” phenomenon found in experiment, we apply Dresselhaus SOI to the ideal 1D SL. The conclusion is that the Dresselhaus SOI has a strong effect on the emergence of “half oscillation”.  相似文献   

13.
颜玉珍  胡梁宾 《中国物理 B》2010,19(4):47203-047203
We study theoretically the influence of spin--orbit coupling induced by in-plane external electric field on the intrinsic spin-Hall effect in a two-dimensional electron gas with Rashba spin--orbit coupling. We show that, after such an influence is taken into account, the static intrinsic spin-Hall effect can be stabilized in a disordered Rashba two-dimensional electron gas, and the static intrinsic spin-Hall conductivity shall exhibit some interesting characteristics as conceived in some original theoretical proposals.  相似文献   

14.
Using the single-particle formalism, we calculate the thermopower of conduction electrons in a nanowire considering dispersion relations containing local maxima. At low temperatures, the thermopower exhibits positive and negative peaks that are consistent with Mott's approximation. The peaks are degenerate at a certain direction of the magnetic field defined by the strengths of the Rashba and Dresselhaus interactions. The sign and the height of the peak depend on the number of channels available for conduction.  相似文献   

15.
Karan Singh  K. Mukherjee 《哲学杂志》2020,100(13):1771-1787
ABSTRACT

In this work, we report the results of DC susceptibility, AC susceptibility and related technique, resistivity, transverse and longitudinal magnetoresistance and heat capacity on polycrystalline magnetic semimetal CeAlGe. This compound undergoes antiferromagnetic type ordering around 5.2 K (T1). Under the application of external magnetic fields, parallel alignment of magnetic moments is favoured above 0.5?T. At low field and temperature, frequency and AC field amplitude response of AC susceptibility indicate the presence of spin–lattice relaxation phenomena. The observation of spin–lattice interaction suggests the presence of the Rashba–Dresselhaus spin–orbit interaction which is associated with inversion and time-reversal symmetry breaking. Additionally, the presence of negative and asymmetric longitudinal magnetoresistance indicates anomalous velocity contribution to the magnetoresistance due to the Rashba–Dresselhaus spin–orbit interaction which is further studied by heat capacity.  相似文献   

16.
Spin splitting of asymmetric quantum wells is theoretically investigated in the absence of any electric field, including the contribution of interface-related Rashba spin-orbit interaction as well as linear and cubic Dresselhaus spin-orbit interaction. The effect of interface asymmetry on three types of spin-orbit interaction is discussed. The results show that interface-related Rashba and linear Dresselhaus spin-orbit interaction can be increased and cubic Dresselhaus spin-orbit interaction can be decreased by well structure design. For wide quantum wells, the cubic Dresselhaus spin-orbit interaction dominates under certain conditions, resulting in decreased spin relaxation time.  相似文献   

17.
We obtain analytic formulas for the frequency-dependent spin-Hall conductivity of a two-dimensional electron gas (2DEG) in the presence of impurities, linear spin-orbit Rashba interaction, and external magnetic field perpendicular to the 2DEG. We show how different mechanisms (skew scattering, side jump, and spin precession) can be brought in or out of focus by changing controllable parameters such as frequency, magnetic field, and temperature. We find, in particular, that the dc spin-Hall conductivity vanishes in the absence of a magnetic field, while a magnetic field restores the skew-scattering and side jump contributions proportionally to the ratio of magnetic and Rashba fields.  相似文献   

18.
We have study the simultaneous effect of Rashba and Dresselhaus spin–orbit interactions on the polaron properties in wurtzite semiconductor quantum wells. The linear and cubic contributions of the bulk Dresselhaus spin–orbit coupling and the effects of phonon confinement on electron–optical-phonon interaction Hamiltonians are taken into account. We have found analytical solutions for the polaron energies as well as polaron effective mass within the range of validity of perturbation theory. It is shown that the polaron energy and effective mass correction are both significantly enhanced by the spin–orbit coupling. Wave number dependent phonon contribution on the electron energy has minima and varies differently of the spin-up and spin-down states. Polaron self-energy due to interface optical phonon modes has larger values than of the confined optical phonon modes ones. The polaron effective mass exhibits anisotropy and the contribution of the Dresselhaus spin–orbit coupling term on the polaron effective mass is dominated by Rashba one.  相似文献   

19.
The spin-dependent electron transport is numerically studied in a nonmagnetic nanostructure in the presence of both Dresselhaus and Rashba spin-orbit interactions. It is shown that the large spin polarization can be achieved in such a structure mainly due to the Rashba spin-orbit term induced splitting of the resonant level. It is also shown that the spin polarization strongly depends on the well width and the thickness of the middle barrier as well as the height of the middle barrier.  相似文献   

20.
Spin transport properties in a non-uniform quantum wire (QW) in the presence of both the Rashba and Dresselhaus spin–orbit couplings (SOCs) is investigated by using the non-equilibrium Green's function (NEGF) method combined with the Landauer Büttiker formalism. It is found that such a non-uniform quantum wire exhibits considerable spin polarization in its conductance in the influence of both the Rashba and Dresselhaus SOCs, and that the two SOCs' strengths strongly affect both the magnitude and sign of the electron spin polarization. Interestingly, the Rashba and Dresselhaus SOCs play the same modulating role in the electron spin polarization. The proposed nanostructure can potentially be utilized to devise an all-electrical spintronic device.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号