首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nature and surroundings of lithium cations in lithium-exchanged X and A zeolites following loading with the alkali metals Na, K, Rb, and Cs have been studied through (7)Li solid-state NMR spectroscopy. It is demonstrated that the lithium in these zeolites is stable with respect to reduction by the other alkali metals. Even though the lithium cations are not directly involved in chemical interactions with the excess electrons introduced in the doping process, the corresponding (7)Li NMR spectra are extremely sensitive to paramagnetic species that are located inside the zeolite cavities. This sensitivity makes (7)Li NMR a useful probe to study the formation, distribution, and transformation of such species.  相似文献   

2.
Inorganic electrides are a novel kind of ionic compounds in which the anions are electrons confined in a complex array of cavities or channels and the cations are nanoscale arrays of alkali metal ions that provide charge balance. In electrides the donated electron behaves like a low-density correlated electron gas, whereby the dimensionality of the electron gas and its electronic and magnetic properties are determined by the topology of the cavities in the host matrix. Unlike traditional electrides, in which alkali cations are encapsulated within an organic cage, inorganic electrides are thermally stable. The current inorganic electrides based on alkali metal loaded zeolites can be designed as useful reduced-dimensionality materials. Inorganic electrides are powerful reducing agents, and they are able to reduce small aromatic molecules to the radical anions within the channels of the zeolite.  相似文献   

3.
Alkali Metal Clusters in Zeolite Y. Preparation, Properties, Reactions Alkali metal clusters (Type AB33+) were synthesized by reaction of alkali metal A (Li, Na, K, Rb, Cs) with the cations B (alkali, alkaline earth, and rare earth metals) of zeolite Y. The compounds were characterized by UV/VIS spectroscopy, oxidation by carbon oxides and organic halides, and adsorption of gases and polar molecules. The clusters are less reactive than the free alkali metals, the redox potential depends on the alkali metal as well as the cation of zeolite. Chemical interactions with typical ligands and with N2, Ar, Kr, CO, CO2, Benzene, and n-Hexane were observed. Reaction with ammonia leads to solvated electrons in zeolite's super-cage, stable up to 240 K.  相似文献   

4.
Taking |D(H(2)O)(x)|[AlSiO(4)] based materials (where D is Li, Na, K, Rb or Cs) as an archetypal aluminosilicate system, we use accurate density functional theory calculations to demonstrate how the substitution of silicon cations in silica, with pairs of aluminium and (alkali metal) cations, changes the energetic ordering of different competing structure-types. For large alkali metal cations we further show that the formation of porous aluminosilicate structures, the so-called zeolites, is energetically favored. These findings unequivocally demonstrate that zeolites can be energetic preferred reaction products, rather than being kinetically determined, and that the size of the (hydrated) cations in the pore, be it inorganic or organic, is critical for directing zeolite synthesis.  相似文献   

5.
Anions of sodium, potassium, rubidium, and cesium are stable both in suitable solvents and in crystalline solids. The latter can be prepared either by cooling a saturated solution or by rapid solvent evaporation. Thermodynamic arguments show that alkali metal anions can probably exist in saturated solutions of the alkali metals in any compatible solvent, but that below saturation, dissociation into the cation and solvated electrons is favored in highly polar solvents such as ammonia. The key to solvent-free salts of the alkali metal anions is stabilization of the cation by incorporation into a suitable crown or cryptand complex. By using such complexes it also appears possible to produce “electride” salts in which the charge of the complexed cation is balanced by a trapped electron. The chemical, electrical, and optical properties of salts of the alkali metal anions and “electrides” could provide useful applications.  相似文献   

6.
Lipophilic cyclodextrin (CD) derivatives were prepared to extract alkali metal cations from a water phase into an organic phase. The extraction equilibrium constant, K ex, was determined by the solvent extraction method using UV absorption spectroscopy. Hydroxyl groups at the carbons in the 2,6-positions of CD molecules were dipropylated to add the hydrophobicity for dissolving into organic solvents, and furthermore hydroxyl groups at the carbons in the 3-position of these derivatives were acylated as complexing sites with the alkali metal cations. These CD derivatives formed a 1 : 1 complex with alkali metal cations, except for the case of Li+, and transported the alkali metal cations from a water phase into a benzene phase. The initial concentrations of alkali metal cation and picrate anion in the water phase and that of the CD derivatives in the organic phase strongly influenced the extraction equilibrium. Extraction of the alkali metal cation by the derivative without acyl groups was not detected. K ex values of these CD derivatives are of the same order of magnitude as or larger than those of crown ethers. The order of the K ex values in all cases is Li+ < Na+ < K+ Rb+ Cs+, although these CD derivatives have no special selectivity for the alkali metal cations. The cation extraction mechanism was interpreted by an induced-fit mechanism.  相似文献   

7.
The optical absorption spectra of alkali metals in ethylenediamine have provided evidence for a third oxidation state, -1, of all of the alkali metals heavier than lithium. Experimentally determined NMR parameters have supported this interpretation, further indicating that whereas Na(-) is a genuine metal anion, the interaction of the alkali anion with the medium becomes progressively stronger for the larger metals. Herein, first-principles computations based upon density functional theory are carried out on various species which may be present in solutions composed of alkali metals and ethylenediamine. The energies of a number of hypothetical reactions computed with a continuum solvation model indicate that neither free metal anions, M(-), nor solvated electrons are the most stable species. Instead, [Li(en)(3)](2) and [M(en)(3)(δ+)·M(δ-)] (M = Na, K, Rb, Cs) are predicted to have enhanced stability. The M(en)(3) complexes can be viewed as superalkalis or expanded alkalis, ones in which the valence electron density is pulled out to a greater extent than in the alkali metals alone. The computed optical absorption spectra and NMR parameters of the [Li(en)(3)](2) superalkali dimer and the [M(en)(3)(δ+)·M(δ-)] superalkali-alkali mixed dimers are in good agreement with the aforementioned experimental results, providing further evidence that these may be the dominant species in solution. The latter can also be thought of as an ion pair formed from an alkali metal anion (M(-)) and solvated cation (M(en)(3)(+)).  相似文献   

8.
We report first-principles studies on systems formed by alkali metal (Na, K, or Rb) added to zeolite ITQ-4. Geometric and electronic structures of the quasi-1D chains of intercalated alkali metal atoms at experimental loading (4 metal atoms per 32 Si) are studied. Clear differences between different kinds of alkali metal are found, with a general trend of decreased ionization and less metallic character for the lighter alkali metals. Within the zeolite channels, it is possible to form insulated and metallic alkali metal chains by doping Na or Rb. Agreeing with experiments, only Rb here is found to be a good candidate to generate inorganic electride. We also predict that a large quantity of Na can be doped into the zeolite channel, while no more than 4 Rb per 16 Si can be doped.  相似文献   

9.
Extraction of alkali metal picrates with N,N'-dibenzyl-18-crown-6 was carried out, with dichloromethane as water-immiscible solvent, as a function [ligand]/[metal cation]. The extractability of metal picrates (Li(+), Na(+), K(+), Rb(+), Cs(+)) was evaluated as a function of [L]/[M(+)]. The extractability of complex cation-picrate ion pairs decreases in this sequence: Li(+)>Rb(+)>Cs(+)>K(+)>Na(+). The overall extraction equilibrium constants (K(ex)) for complexes of N,N'-dibenzyl-18-crown-6 with alkali metal picrates between dichloromethane and water have been determined at 25 degrees C. The values of the extraction constants (logK(ex)) were determined to be 10.05, 6.83, 7.12, 7.83, 6.73 for Li(+), Na(+), K(+), Rb(+) and Cs(+) compounds, respectively. DB186 shows almost 2-fold extractability against Li(+) compared to the other metal picrates, whereas it shows no obvious extractability difference amongst the other metal cations when [L]/[M(+)] is 0.2-1. However, an increasing extractability is observed for Cs(+) when [L]/[M(+)] [1].  相似文献   

10.
The vibrational, Raman, and IR, spectra of the five 12-crown-4 (12c4) complexes with Li+, Na+, K+, Rb+, and Cs+ alkali metal cations were measured. Except for a small shift of the position of some bands in the vibrational spectra of the Li+ complex, the vibrational spectra of the five complexes are so similar that it is concluded that the five complexes exist in the same conformation. B3LYP/6-31+G* force fields were calculated for six of the eight predicted conformations in a previous report (J. Phys. Chem. A 2005, 109, 8041) of the 12c4-Li+, Na+, and K+ complexes that are of symmetries higher than the C1 symmetry. These six conformations, in energy order, are of C4, Cs, Cs, C(2v), C(2v), and Cs symmetries. Comparison between the experimental and calculated vibrational frequencies assuming any of the above-mentioned six conformations shows that the five complexes exist in the C4 conformation. This agrees with the fact that the five alkali metal cations are larger than the 12c4 ring cavity. The B3LYP/6-31+G* force fields of the C4 conformation of the Li+, Na+ and K+ complexes were scaled using a set of eight scale factors and the scale factors were varied so as to minimize the difference between the calculated and experimental vibrational frequencies. The root-mean-square (rms) deviations of the calculated frequencies from the experimental frequencies were 7.7, 5.6, and 5.1 cm(-1) for the Li+, Na+, and K+ complexes, respectively. To account for the earlier results of the Li+ complex that the Cs conformation is more stable than the C4 conformation by 0.16 kcal/mol at the MP2/6-31+G* level, optimized geometries of the complex were calculated for the C4 and Cs conformations at the MP2/6-311++G** level. The C4 conformation was calculated to be more stable than the Cs conformation by 0.13 kcal/mol.  相似文献   

11.
Pulse radiolysis of alkali metal cations in isopropylamine indicates the formation of three distinct optical bands attributed to solvated electrons, e?s, ion-pairs (M+, e?s) and alkali anions M?. It is found that the ion-pair spectra exhibit a distinct blue shift from that of e?s. Comparisons with results obtained in ethylamine, tetrahydrofuran and other solvents demonstrate that the position of the ion-pair band can be correlated with the percent atomic character observed by ESR for the “monomer” species in alkali metal solutions. Results are presented for the alkali metal series, Li, Na, K, Rb and Cs.  相似文献   

12.
A wide variety of characterization methods, including UV-vis spectroscopy of adsorbed I2, microcalorimetry of CO2 adsorption, and x-ray absorption spectroscopy at the Cs LIII edge of zeolite cations, was applied to a series of alkali containing zeolites in order to elucidate the nature of the basic sites on these materials. In addition, three catalytic reactions involving basic zeolites were studied. In the first case, alkali-exchanged zeolites (L, Beta, X and Y) were used as catalysts for the side-chain alkylation of toluene with methanol to form styrene and ethylbenzene. Zeolites with low base site densities and appropriate base strengths catalyzed toluene alkylation without decomposing methanol to carbon monoxide. In the second example, ruthenium metal clusters were supported on alkali and alkaline earth exchanged X zeolites and tested as catalysts for ammonia synthesis. Zeolites containing alkaline earth ions exhibited rates greater than those containing alkali ions. Finally, zeolite X loaded with alkali metal was an active catalyst for toluene alkylation with ethylene whereas zeolite X loaded with alkali oxide was inactive for the reaction. These results suggest that exciting opportunities exist for the use of basic zeolites as catalysts and catalyst supports.  相似文献   

13.
Novel cluster anions Li2F- and Li6F- with alkalide character have been studied in the present paper. In contrast to a typical neutral alkalide, Li2F- contains a F- anion instead of the neutral ligand and forms an alkalide anion F-Li+Li-. In addition to a F- anion ligand, Li6F- contains a Li3+ superalkali cation instead of the alkali metal cation and a Li3- superalkali anion instead of the alkali metal anion, and this alkalide anion can be denoted by F-Li3+Li3-, which is supported by NBO charge results. The results indicate that the F- anion can polarize not only the Li atom but also the Li3 superalkali to form alkalide anions with excess electrons. For Li2F-, two linear structures (1Sigma+ and 3Sigma+ states) are obtained. For Li6F-, the structure of the 1A1 state is a trigonal antiprism capped by the F- anion with C3v symmetry, while the structure of the 7A' state is a slightly distorted trigonal antiprism with Cs symmetry. Due to the excess electrons on the alkali metal and superalkali anions (Li- and Li3-), the alkalide anions Li2F- and Li6F- have large first hyperpolarizabilities (beta0=1.116x10(4)-1.764x10(5) au). For the spin multiplicity effect on electric properties, in these two alkalide anions, the values of the static electric properties, especially the first hyperpolarizabilities, of the high spin states are larger than the corresponding values of the low spin states. For the substitution effect of superalkali atoms, in the two singlet states, as the Li3 superalkalis substitute the Li atoms, the value of the mean of polarizability increases, while the values of dipole moment and the first hyperpolarizability decrease.  相似文献   

14.
Abstract

The structures of several salts that contain alkali metal anions (alkalides) and two that contain trapped electrons (electrides) are correlated with their optical and NMR spectra, and magnetic susceptibilities. The nature of the channels and trapping sites in the two electrides are described.  相似文献   

15.
The interaction of 18-crown-6 (CE) with picric acid(PA) was studied in the UV-Visible region in 1,2-dichloroethane (DCE) at 298.2 K. The effect of the surfactant Triton X-100 was studied, and it was found to have a pronounced effect on the interaction of 18-crown-6 with picric acid. The effect of the alkali metal cations, especially Na and K on the complex matrix donor–acceptor surfactant was studied. It is found that the extraction of the insoluble solid NaCl and KCl to the organic phase increased by more than 8-fold in the presence of the complex. The interaction of the alkali metals ions, i.e., Li, Na, K, Cs and Rb with the systems Donor–Acceptor and Donor–Acceptor–Triton were studied. It is found that the stability of the complexes formed between the system CE + Triton + Picric acid and the alkali metals ions depends on the ratio between the crown ether radius and the alkali metal radius.  相似文献   

16.
碱金属原子簇的结构和稳定性   总被引:1,自引:0,他引:1       下载免费PDF全文
基于从体心立方碱金属晶体优化确立的多体展开势能函数,本文通过坐标优化研究了碱金属原子簇Xn(X=Li,Na,K,Rb,Cs)的结构和稳定性。发现:(1)Xn原子簇(n=4-21)倾向于形成畸变四面体结构单元,(Td)的密堆积,分子表面被三元环(D3h)所覆盖,其中X7-X15最优化结构中包含五角双锥X7(D5h)结构单元,具有区域五重对称轴;(2)“微观晶体碎片”的分层优化结果表明,体心立方、面心  相似文献   

17.
Two new classes of (HCN)(n)...Li and Li...(HCN)(n) (n = 1, 2, 3) clusters with the electride characteristic are formed in theory by the metal Li atom attaching to the (HCN)(n) (n = 1, 2, 3) clusters. Because of the interaction between the Li atom and the (HCN)(n) part, the 2s valence electron of the Li atom becomes a loosely bound excess electron. Our high-level ab initio calculations show that these new clusters with the excess electron have large first hyperpolarizabilities, for example, beta(0) = -15,258 au for (HCN)...Li and beta(0) = -3401 au for Li...(HCN) at the QCISD/6-311++G(3df,3pd) level (only beta(0) = -2.8 au for HCN monomer(26)). Obviously, the excess electron from the Li atom plays a crucial role in the large first hyperpolarizabilities of these clusters. The beta(0) value of (HCN)(n)...Li (beta(0) > 10(4) au, from sigma --> pi* transition) is larger than that of Li...(HCN)(n) (beta(0) > 10(3) au, from sigma --> sigma* transition) for n = 1, 2, or 3. In addition, two interesting rules have been observed. They are that |beta(0)| decreases with lengthening of the HCN chain for (HCN)(n)...Li clusters and that |beta(0)| increases as n increases for Li...(HCN)(n) clusters. In this paper, we discuss two classes of clusters that are highly similar to the electride structure model, of which the structural characteristics are that alkali metal atoms ionize to form cations and trapped electrons under the action of other polar molecules. Thus, the investigation on the large first hyperpolarizabilities of (HCN)(n)...Li and Li...(HCN)(n) (n = 1, 2, 3) may prompt one to study the unusual nonlinear optical responses of some electrides.  相似文献   

18.
Novel open-framework alkali metal uranyl periodates, having the formula A[(UO2)3(HIO6)(OH)(O)(H2O)].1.5H2O (A = Li, Na, K, Rb, Cs), have been prepared through mild hydrothermal synthesis. These isostructural compounds contain distorted UO7 pentagonal bipyramids that are linked through a uranyl (UO22+) to uranyl cation-cation interaction. This interaction arises from a single axial uranyl oxygen coordinating at an equatorial site of an adjacent uranyl unit. These uranium oxide polyhedra are further bound by IO6 distorted octahedra creating an open-framework structure whose channels contain the alkali metal cations.  相似文献   

19.
Density functional theoretical methods, including several basis sets and two functional, were used to collect information on the structure and energetic parameters of poly(ethylene glycol) (PEG), also referred to as poly(ethylene oxide) (PEO), coordinated by alkali metal ions. The oligomer chain is found to form a spiral around the alkali cation, which grows to roughly two helical turns when the oligomer size increases to about the decamer for each alkali ion. Above this size, the additional monomer units do not build the spiral further for Li(+) and Na(+); instead, they form less organized segments outside or next to the initial spiral. The distance of the first layer of co-ordinating O atoms from the alkali cation is 1.9-2.15 ? for Li(+), 2.3-2.5 ? for Na(+), 2.75-3.2 ? for K(+) and 3.5-3.8 ? for Cs(+) complexes. The number of O atoms in the innermost shell is five, six, seven and eleven for Li(+), Na(+), K(+) and Cs(+). The collision cross sections with He increase linearly with the oligomer to a very good approximation. No sign of leaning towards the 2/3 power dependence characterizing spherical particles is observed. The binding energy of the cation to the oligomer increases up to polymerization degree of about 10, where it levels off for each alkali-metal ion, indicating that this is approximately the limit of the oligomer size that can be influenced by the alkali cation. The binding energy-degree of polymerization curves are remarkably parallel for the four cations. The limiting binding energy at large polymerization degrees is about 544 kJ mol(-1), 460 kJ mol(-1), 356 kJ mol(-1) and 314 kJ mol(-1) for Li, Na, K and Cs, respectively. The geometrical features are compared with the X-ray and neutron diffraction data on crystalline and amorphous phases of conducting polymers formed by alkali-metal salts and PEG. The implications of the observations concerning collision cross sections and binding energies to ion mobility spectroscopy and mass spectrometry are discussed.  相似文献   

20.
Laser flash photolysis of germanium-containing ITQ-17 zeolite (Ge/ITQ-17, a single polymorph of beta zeolite) at 266 nm generates a transient spectrum decaying in the sub-millisecond time scale that is compatible with the formation of two transient species. The shorter lived transient (tau approximately 45 micros under nitrogen) has been assigned to trapped electrons due to the characteristic spectroscopic absorption (single band at 480 nm) and its quenching by typical electron scavengers such as N(2)O and CH(2)Cl(2). The second longer lived transient (lambda(max) = 500, 540, and 600 nm; tau approximately 390 micros) is not quenched by O(2) or electron scavengers, but it is quenched by methanol as hole scavenger and has been assigned to positive holes. Also there is a remarkable similarity of the transient spectrum of the Ge/ITQ-17 with the optical spectrum reported previously for electron-hole pairs in ZSM-5 zeolite. Under the same irradiation conditions, photoejection of electrons and photogeneration of positive holes has not been observed for conventional aluminosilicate zeolites, all-silica zeolites, or GeO(2)-impregnated zeolites. Therefore this photochemical behavior has been ascribed to the presence of framework germanium atoms opening the way for photoresponsive zeolites. The ability of Ge/ITQ-17 to generate photochemically electrons and holes has been confirmed by adsorbing naphthalene and propyl viologen sulfonate as electron donor and acceptor, respectively, and observing the generation of the corresponding radical ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号