首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dc and ac electrical conductivity of barium tellurite borate glass doped with Nd2O3 in the composition 50 B2O3- (20-X) BaO- 20TeO2 10 LiF or Li2O where x = 0.5, 1, 1.5 and 2 Nd2O3 were measured in the temperature range 303–648 K and in the frequency range 0.1–100 kHz. The dc and ac conductivities values increase, whereas the activation energy of conductivities decreases with increasing Nd2O3 content in the glasses containing LiF and by the replacement of LiF by Li2O the conductivity was found to decrease with addition of Nd2O3. The electrical conduction has been observed to be due to small polaron hopping at high temperatures. The frequency dependence of the ac conductivity follows the power law σAC (ω) = A ωs. The frequency exponent (s) values (in the range 0.94 and 0.33) decreases with increasing temperature. The dielectric constant and dielectric loss increased with increasing temperature and decreased with increase in frequency for all glasses studied. In LiF glasses, it is observed that, the values of ?\ and tan δ are observed to increase with the addition of Nd2O3 whereas they decrease in the glasses containing Li2O. The electrical modulus formalism has been used for studying electrical relaxation behavior in studied glasses. It is for first time that the Nd2O3 doped barium tellurite borate glasses have been investigated for dc and ac conductivities and dielectric properties over a wide range of frequency and temperature.  相似文献   

2.
This work deals with the dielectric properties of conductive composite materials, which consist of thermoplastic polypropylene (PP) matrix filled with carbon black (CB). The CB concentration was systematically varied in a wide range. Our main interest is focused on the investigation of electrical conductivity mechanism and related percolation phenomena in these materials. To study the electrical and dielectric properties of composites we used broadband ac dielectric relaxation spectroscopy (DRS) techniques in a wide temperature range. By measurements of complex dielectric permittivity, ϵ*, the dependence of ac conductivity, σac, and dc conductivity, σdc, on the frequency, the temperature and the concentration of the conductive filler was investigated. The behavior of this system is described by means of percolation theory. The percolation threshold, PC, value was calculated to be 6.2 wt.% CB. Both, dielectric constant and dc conductivity follow power‐law behavior, yielding values for the critical exponents, which are in good agreement with the theoretical ones. Indications for tunneling effect in the charge carriers transport through the composites are presented. The temperature dependence of dc conductivity gives evidence for the presence of positive temperature coefficient (PTC) effect.  相似文献   

3.
The solid solubility limit of Ce in Nd2–x Ce x CuO4 ± δ , prepared by sol–gel process, is established up to x = 0.2. The transition from negative temperature coefficient to positive temperature coefficient, within the solid solubility region, is observed at 620 °C. The area-specific-resistance (ASR) is optimized for electrochemical cell sintered at 800 °C. ASR enhances with increase in sintering temperature of cell. ASR value of 0.93 ohm cm2 at 700 °C, determined by electrochemical impedance spectroscopy is comparable against that by voltage versus current (V–I) characteristics at 0.98 ohm cm2 at the same temperature. Electrochemical performance and ASR of Nd1.8Ce0.2CuO4 ± δ is improved when prepared by sol–gel route over solid-state reaction, which is attributed to uniform size and shape of nanocrystalline grains.  相似文献   

4.
Perovskite types Sr(Sm0.5Nb0.5)O3, (SSN) ceramics have been prepared through solid state reaction route. The scanning electron microscopy provides information on the quality of the samples and uniform grain distribution over the surface of the samples. The field dependence of the dielectric response was measured in a frequency range from 50 Hz to 1 MHz and in a temperature range from 60 °C to 420 °C indicates polydispersive nature of the materials. An analysis of the dielectric constant (?′) and tangent loss (tanδ) with frequency is performed assuming a distribution of relaxation times as confirmed by the scaling behavior of electric modulus spectra. The frequency dependence of the electric modulus peak is found to obey Arrhenius law with activation energy of ∼0.026 eV. The complex plane impedance plot shows the grain boundary contribution for higher value of dielectric constant in the law frequency region. The frequency dependence of electrical data is also analyzed in the framework of conductivity and electric modulus formalisms. Both these formalisms show qualitative similarities in relaxation times. The scaling behavior of imaginary part of electric modulus M″ suggests that the relaxation describes the same mechanism at various temperatures in SSN.  相似文献   

5.
The impedance of a ZrO2–7.5 mol% Y2O3 ceramic specimen was measured using the two-probe technique in the frequency range 20 Hz–1 MHz at room temperature and in the temperature range 457–595 K. The novelty of the research lies in the analysis of the intragrain part of the impedance spectra of the ceramics on the basis of the approach proposed in the literature for impedance of ZrO2–Y2O3 single crystals. The method to determine a value of the intragrain direct current electrical conductivity from an impedance spectrum has been developed. The frequency dependence of the intragrain complex dielectric response was interpreted according to the common model used in the literature. Frequency domains, where a power-law dependence having different exponents n 1=0.825–0.844 and n 2=0.571–0.592 is observed, were found. The inner consistency of the model used is verified. Values of the transition frequency and the relaxation frequency were determined for the grain interiors and compared with each other. The values of the activation energies of the direct current conductivity, the transition frequency and the relaxation frequency are found to be the same within experimental uncertainty in the temperature range 457–523 K. Electronic Publication  相似文献   

6.
Magnetic dendrites of Co x Pb1−x were fabricated through potentiostatic electrochemical deposition on Cu substrates in boric acid solution at room temperature. The as-deposited dendrites were determined by scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), electrodeposition (ED), and energy dispersive X-ray spectroscopy (EDS). SEM results indicate that the Co x Pb1−x dendrites are highly symmetrical in structures. The diameters of the branches are about 50 ~ 200 nm, and the backbones are continuous with lengths up to about 10 μm. XRD patterns show that the as-deposited dendrites are solid solutions. The annealing treatment can result in the recrystallization of these metastable alloys into two separate phases. TEM, ED, and EDS results also reveal that the backbones and the branches of the dendrites are composed of different amounts of cobalt. Magnetic measurements confirm that the as-deposited Co x Pb1−x dendrites have a softly ferromagnetic behavior, and a small coercive force (about 80 Oe). Also the saturation magnetizations of the Co x Pb1−x dendrites decrease rapidly with the temperature increasing.  相似文献   

7.
ABO3-type oxides are recently being explored as solid electrolytes for solid oxide fuel cells. The objective of this work was to study an ABO3-type perovskite oxide, YAlO3, for its electrical properties and its suitability as a solid electrolyte. The undoped and doped compositions of Y1 - xCaxAlO3 - d( x = 0 - 0.25 ) {{\hbox{Y}}_{1 - x}}{\hbox{C}}{{\hbox{a}}_x}{\hbox{Al}}{{\hbox{O}}_{3 - \delta }}\left( {x = 0 - 0.25} \right) have been synthesized. The phase purity of the samples has been investigated by X-ray diffraction studies. The electrical conductivity studies have been performed using ac impedance spectroscopy in the range 200–800 °C in air. The doped YAlO3 compositions exhibit a total conductivity of about 1 mS/cm at 800 °C. The microstructural evaluation of the samples has been conducted by scanning electron microscopy and energy dispersive spectrum analysis.  相似文献   

8.
Sol–gel auto-combustion method is adopted to prepare solid solutions of nano-crystalline spinel oxides, (Ni1 − x Zn x )Fe2O4 (0 ≤ x ≤ 1).The phases are characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy, selected area electron diffraction, and Brunauer–Emmett–Teller surface area. The cubic lattice parameters, calculated by Rietveld refinement of XRD data by taking in to account the cationic distribution and affinity of Zn ions to tetrahedral sites, show almost Vegard’s law behavior. Galvanostatic cycling of the heat-treated electrodes of various compositions are carried in the voltage range 0.005–3 V vs. Li at 50 mAg−1 up to 50 cycles. Phases with high Zn content x ≥ 0.6 showed initial two-phase Li-intercalation in to the structure. Second-cycle discharge capacities above 1,000 mAh g−1 are observed for all x. However, drastic capacity fading occurs in all cases up to 10–15 cycles. The capacity fading between 10 and 50 cycles is found to be greater than 52% for x ≤ 0.4 and for x = 0.8. For x = 0.6 and x = 1, the respective values are 40% and 18% and a capacity of 570 and 835 mAh g−1 is retained after 50 cycles. Cyclic voltammetry and ex situ transmission electron microscopy data elucidate the Li-cycling mechanism involving conversion reaction and Li–Zn alloying–dealloying reactions.  相似文献   

9.
The relative complex dielectric function, electric modulus, alternating current (ac) electrical conductivity and complex impedance spectra of poly(ethylene oxide) (PEO)–montmorillonite (MMT) clay aqueous colloidal suspension (hydrocolloids) were investigated over the frequency range 20 Hz to 1 MHz at 27 °C. The relaxation time corresponding to electrode polarisation and Maxwell–Wagner polarisation processes (ionic conduction) were determined from these plots. The direct current (dc) electrical conductivity is evaluated from the fitting of real part ac conductivity data to the Jonscher power law. A correlation of increase in dc conductivity and decrease of ionic conduction relaxation time with increase of clay concentration is discussed considering intercalation of PEO chains and its dynamics and exfoliation of MMT clay nanoplatelets in these complex fluids. The formation of PEO–MMT clay supramolecular lamellar nanostructures with increase in continuity of lamellae arrangements were explored for the structural conformation of these nanocomposite novel materials.  相似文献   

10.
Summary: Volume conducting PA-12 based composites powders were chemically prepared by in situ polymerization and aniline doping at room temperature. These kinds of polyamide / PANI composites were investigated regarding their electrical properties. Their ac and dc electrical properties measured in the frequency range of 10−2–107 Hz are reported and the frequency dependence of electrical conductivity was investigated as a function of PANI concentration leading to the determination of the conductivity. The experimental conductivity was found to increase continuously with PANI content and explained by percolation theory with a relatively low percolation threshold of about 0.4 wt.%. The dielectric behavior of various PANI polymer composites has been characterized by the critical frequency ωc (denoting the crossover from the dc plateau of the conductivity to its frequency dependent ac behaviour). Modelling the conductivity behavior versus volume fraction using Slupkowski approach has revealed that the considered parameters are not sufficient to describe the electrical conductivity behavior.  相似文献   

11.
PrFeO3 (PFO) nanoceramic is synthesized by a sol-gel reaction technique. Thermogravimetric study of the as prepared gel is performed to get the lowest possible calcination temperature of PFO nanoparticles. The Rietveld refinement of the powder X-ray diffraction (XRD) pattern shows that the sample crystallizes in the orthorhombic (Pnma) phase at room temperature. The particle size of the sample is determined by scanning electron microscopy. The vibrational properties of the samples are studied by Raman spectroscopy at an excitation wavelength of 488 nm to substantiate the XRD results. Group-theoretical study is performed to assign the different vibrational modes of the sample in accordance with structural symmetry. Dielectric spectroscopy is applied to investigate the ac electrical properties of PFO at various temperatures between 313 and 473 K and in a frequency range of 42 Hz–1.1 MHz. The modified Cole-Cole equation is used to describe the experimental dielectric spectra. The frequency-dependent conductivity spectra are found to follow the power law. The temperature dependent dc conductivity is found to obey the Arrhenius law with an activation energy of 0.280 eV. An analysis of the real and imaginary parts of impedance is performed, assuming a distribution of relaxation times as confirmed by Cole-Cole plot.  相似文献   

12.
The synthesis conditions for variable-composition phase Na1−x Co1−x Fe1+x (MoO4)3, 0 ≤ x ≤ 0.4, crystallizing in the nasicon structure type (R $ \bar 3 $ \bar 3 c) were examined. For this phase, the crystallographic parameters were calculated, vibrational spectra were interpreted, and temperature dependence of electrical conductivity, dielectric constant, and dielectric loss tangent were examined.  相似文献   

13.
《Solid State Sciences》2012,14(3):387-393
Partial substitutions of Ho at the La-site of La2Mo1.7W0.3O9−δ were carried out. Compound La2−xHoxMo1.7W0.3O9−δ (x = 0, 0.05, 0.1, 0.15, 0.2, 0.3, 0.5) has been synthesized by solid state reaction technique. The specimens were characterized by XRD, SEM, DSC for crystal structure, surface morphology, phase transition and ac impedance spectroscopy for conductivity and other electrical parameter determination. Partial substitution of Ho at the La-site of La2Mo1.7W0.3O9−δ, increases the conductivity within the substitutional range, x ≤ 0.2. The phase transition of La2Mo2O9 is suppressed in doped compound and a transition from Arrhenius to VTF behavior of temperature dependence of conductivity is observed around 500 °C. The conductivity is found to be high in the intermediate temperature region and at high temperature the conductivity of La2−xHoxMo1.7W0.3O9−δ (0.05 ≤ x ≤ 0.2) is almost similar with that of La2Mo2O9. The decrease in energy barrier enhances the thermally assisted process to start at lower temperature.  相似文献   

14.
We present here the evidence for the origin of dc electrical conduction and dielectric relaxation in pristine and doped poly(3‐hexylthiophene) (P3HT) films. P3HT has been synthesized and purified to obtain pristine P3HT polymer films. P3HT films are chemically doped to make conducting P3HT films with different conductivity level. Temperature (77–350 K) dependent dc conductivity (σdc) and dielectric constant (ε′(ω)) measurements on pristine and doped P3HT films have been conducted to evaluate dc and ac electrical conduction parameters. The relaxation frequency (fR) and static dielectric constant (ε0) have been estimated from dielectric constant measurements. A correlation between dc electrical conduction and dielectric relaxation data indicates that both dc and ac electrical conductions originate from the same hopping process in this system. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1047–1053, 2010  相似文献   

15.
Spinel Li4Ti5 − x Zr x O12/C (x = 0, 0.05) were prepared by a solution method. The structure and morphology of the as-prepared samples were characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The electrochemical performances including charge–discharge (0–2.5 V and 1–2.5 V), cyclic voltammetry, and ac impedance were also investigated. The results revealed that the Li4Ti4.95Zr0.05O12/C had a relatively smaller particle size and more regular morphology than that of Li4Ti5O12/C. Zr4+ doping enhanced the ability of lithium-ion diffusion in the electrode. It delivered a discharge capacity 289.03 mAh g−1 after 50 cycles for the Zr4+-doped Li4Ti5O12/C while it decreased to 264.03 mAh g−1 for the Li4Ti5O12/C at the 0.2C discharge to 0 V. Zr4+ doping did not change the electrochemical process, instead enhanced the electronic conductivity and ionic conductivity. The reversible capacity and cycling performance were effectively improved especially when it was discharged to 0 V.  相似文献   

16.
A study of the temperature dependence of thermopower is known to yield auxiliary information about the electronic conductivity of a mixed conductor. In light of the above, thermoelectric power (TEP) measurements were made on MgO-stabilized β″-alumina over the temperature range from 773 to 1223 K under conditions of different sodium activities in the ambient in order to substantiate the existing information on the electronic conductivity of sodium beta alumina (SBA). A mixture of Na x Si m O2 m + x /2 and SiO2 in an environment of fixed served as electrodes reversible to Na+. The heat of transport obtained using the thermopower data at higher temperatures (973–1223 K) was in fair agreement with the activation energy of electrical conduction determined by other studies like impedance measurements and molecular dynamics simulation. It could be inferred from these results that there is negligible electronic conductivity in SBA under the conditions of measurement. The average TEP for SBA was determined to be 700–800 μV/K and the partial molar entropy of Na+ in SBA was found to be ~98 J mol–1 K–1. Electronic Publication  相似文献   

17.
《Solid State Sciences》2012,14(10):1536-1542
Nanocrystalline MnFe2O4 has been synthesized by co-precipitation methods. X-ray diffraction studies were carried out for the determination of phase purity, crystal structure and average crystallite size. X-ray Absorption Fine Structure spectroscopy has been used to determine the valence state and cationic distribution; these results show that nanocrystalline MnFe2O4 has cubic symmetry with 80% inversion. The electrical transport properties were investigated by employing impedance spectroscopy; it has been observed that the dielectric constant decreases with the increase in frequency, the effects of frequency on dielectrical properties are more prominent in the low frequency region, where dielectric constant increases as temperature is increased. However, the ac conductivity is independent of frequency in the low frequency region, <100 Hz, but increases with frequency above 500 Hz. For ac conduction mechanism two models have been presented: in the lower temperature region (233 K–278 K) the small polaron (SP) model has been suggested, whereas for higher temperature regions (above 278 K) the correlated barrier hopping (CBH) mechanism has been proposed.  相似文献   

18.
Sols of silver nanoparticles in toluene were studied by broadband dielectric spectroscopy (10−3–105 Hz). The frequency dependences of the specific alternating current (ac) conductivity and the complex electric modulus were used to estimate the temperature/frequency intervals of long- and short-range charge transfer occurs, respectively. A considerable increase (by more than 30 °C) in the Vogel temperature T 0 and the glass transition temperature T g in sols compared with the pure solvent was found. It can be hypothesized that these cooperative effects reflect the initial stage of the superlattice formation. Although the dielectric characteristics of sols are generally controlled by the conductivity relaxation, the dielectric response was observed in the high-frequency range (1–103 Hz) at low temperatures (from −50 to +10 °C). This response results from the presence of nanoparticles in solution. It is supposed that the relaxation is caused by the motion of ion impurities on the Ag nanoparticle surface within the carboxylate ligands shell. The dielectric properties of films strongly depend on both the characteristics of nanoparticles and the conditions of the film preparation. Like in sols, the direct current (dc) conductivity and the dielectric response of Ag nanoparticles in films are due to ion impurities.  相似文献   

19.
A new oxide-ion conductor of Aurivillius family with a general formula Bi2Al x V1 − x O5.5 − x − δ; 0 ≤ x ≤ 0.20 (BIALVOX) was synthesized by the sol-gel citrate route. Powder X-ray diffraction and simultaneous thermogravimetric and differential thermal analyses confirmed that the calcination of BIALVOX xerogels is fully completed at around 500°C after three hours of thermal treatment. It has been found that the β-orthorhombic phase is stabilized with compositions x ≤ 0.07, whereas the stabilization of the γ′-phase takes place for x ≥ 0.10. AC impedance spectroscopic investigation suggested that the charge accumulation at grain boundaries is thermally activated process. However, the maximum electrical conductivity (7.73 × 10−5 S cm−1) noticed for BIALVOX.13 at 300°C was attributed to the maximum vacancy concentration in the equatorial planes, responsible for the ion diffusion through the structure. This has been further evidenced by the temperature dependence of dielectric permittivity.  相似文献   

20.
A quaternary super-ion-conducting system, 20CdI2 − 80[xAg2O − y(0.7V2O5 − 0.3B2O3)] where 1 ≤ x/y ≤ 3, has been prepared by melt quenching technique. The electrical conductivity measured was the order of 10−4  S/cm at room temperature. The values of silver-ion transport number obtained by electromotive force technique are nearly unity. The thermoelectric power and electrochemical studies were done on the CdI2–Ag2O–V2O5–B2O3 system. The discharge and polarization characteristics were examined for different cathodes to evaluate the utility of these cells as power sources for low energy applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号