首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Several polychlorinated phenoxyphenols with three to nine chlorine atoms were examined as their methyl ethers by electron capture negative ion and positive ion chemical ionization and electron impact mass spectrometry. In chemical ionization studies methane, hydrogen, nitrogen, helium and argon were used as reagent gases. Selected compounds were also examined with deuteriomethane, ammonia and deuterioammonia as reagent gases. Utilization of chemical ionization spectra in conjuction with electron impact spectra provides substantial structural information about these compounds. Chemical ionization spectra provide information about chlorine atom substitution. The position of phenoxy substitution can be established from electron capture negative ion and positive ion spectra.  相似文献   

2.
Collisions of fullerene ions (C(60) (+)) with helium and neon were carried out over a range of laboratory energies (3-20 keV) on a unique tandem time-of-flight (TOF/TOF) mass spectrometer equipped with a curved-field reflectron (CFR). The CFR enables focusing of product ions over a wide kinetic energy range. Thus, ions extracted from a laser desorption/ionization (LDI) source are not decelerated prior to collision, and collision energies in the laboratory frame are determined by the source extraction voltages. Comparison of product ion mass spectra obtained following collisions with inert gases show a time (and apparent mass) shift for product ions relative to those observed in spectra obtained by metastable dissociation (unimolecular decay), consistent with impulse collision models, in which interactions of helium with fullerene in the high energy range are primarily with a single carbon atom. In addition, within a narrow range of kinetic energies an additional peak corresponding to the capture of helium is observed for fragment ions C(50) (+), C(52) (+), C(54) (+), C(56) (+) and C(58) (+).  相似文献   

3.
Optimization of the Finnigan GCQ ion trap mass spectrometry (ITMS) system and a clean-up procedure were carried out in order to apply high-resolution gas chromatography-tandem mass spectrometry for the analysis of polychlorinated biphenyls (PCBs) in aerosols. Six ITMS operating parameters, including isolation time, excitation voltage, excitation time, "q" value, ion source temperature and electron energy were adjusted in order to optimize the instrument analytical performance. The adjustment of all parameters substantially increased the sensitivity of ITMS in the MS-MS mode. Changes in isolation time did not particularly affect ITMS sensitivity while ion source temperature had the strongest influence. After optimization, a limit of detection of 600 fg/microl with S/N varying from 8 up to 91 was achieved. The application of the optimized ITMS parameters conjointly with the developed clean-up procedure resulted in method detection limits of 10-20 fg/m3 for the determination of PCBs, in the particulate and gas phase of the atmospheric aerosol of background areas in the Eastern Mediterranean and Sweden.  相似文献   

4.
The positive-ion mass spectra of a number of didehydro amino acids, ionized by electron impact and/or thermospray, and collision-induced dissociation spectra taken at collision energies of a few electron volts and keV have been performed on multiple quadrupole and reversed geometry sector instruments. Observed differences in the mass spectra and in the fragmentation patterns are explained in terms of different isomeric structures, different internal excitation energies and different ion transit times between the ion source and the collision cell. Molecular ions of unhydrated amino acids are efficiently formed both by electron impact and thermospray, whilst molecular ions of the hydrated compounds are formed more efficiently by the latter technique. The present investigation demonstrates that the use of different ionization techniques combined with mass spectrometry/mass spectrometry measurements at different collision energies yields a wealth of information relevant to structural characterization of this important class of molecules.  相似文献   

5.
The three most toxic coplanar PCB 77, 126 and 169 have been identified and quantified at ultra trace levels (0.02-4.8 ng/gdw) in swiss sewage sludge samples applying high resolution capillary gas chromatography (HRGC) and electron impact (EI) as well as negative ion chemical ionization (NCI) mass spectrometry (MS). NCI mass spectra have been dominated by the molecular ion as base peak and virtually no fragmentation has been observed. Detection limits of the planar PCB under single ion monitoring (SIM) conditions have been typically 100 fg for NCI-MS and 1 pg for EI-MS. NCI-MS was the preferred detection method for the determination of very low concentrations of these important contaminants in sewage sludge samples.  相似文献   

6.
Summary Mass spectra of 12 triazines were obtained by electron impact (EI), positive-ion chemical ionization (PCI) and negative-ion chemical ionization (NCI) using methane and isobutane as reagent gases. EI mass spectrometry is more sensitive than PCI and NCI, although the chemical ionization modes increase selectivity markedly. A pre-column packed with polymer stationary phase was employed to preconcentrate surface and drinking water samples. After desorption of the analytes with ethyl acetate, an aliquot was injected directly into the GC-MS system. Atrazine and simizine were found in these samples at 10–80 ppt levels. The limits of detection for both herbicides were below 10 ppt in drinking water.  相似文献   

7.
The methane negative-ion chemical ionization (NCI) mass spectrum of chlorprothixene shows an unusual MH? ion. This ion can be accounted for by electron capture followed by H˙ transfer from the reagent gas. The most probable site of electron attachment was concluded to be related to the sulfur atom of the thioxanthene ring based on the observation of analogous ions for structurally related compounds, all containing a heterocyclic sulfur. The MH? ion observed with methane as the reagent gas was shifted to MD? when tetradeuteromethane was used in place of methane. The ratio of [M ? H]? to MH? did not change with emission current suggesting that the process is independent of the radical concentration in the CI plasma. Consistent with this observation is the lack of CH3˙ or C2H5˙ adduct ions in the NCI mass spectrum and the fact that gold-plating the ion source did not decrease the proportion of MH?. Also, this mechanism is consistent with thermochemical considerations of reactions of a phenyl radical with various alkanes and observations of ions formed by methane NCI from model compounds. Therefore, unlike other MH? ions observed in methane NCI mass spectra, the mechanism of formation does not appear to involve a hydrogen radical addition followed by electron capture.  相似文献   

8.
The three most toxic coplanar PCB 77, 126 and 169 have been identified and quantified at ultra trace levels (0.02–4.8 ng/gdw) in swiss sewage sludge samples applying high resolution capillary gas chromatography (HRGC) and electron impact (EI) as well as negative ion chemical ionization (NCI) mass spectrometry (MS). NCI mass spectra have been dominated by the molecular ion as base peak and virtually no fragmentation has been observed. Detection limits of the planar PCB under single ion monitoring (SIM) conditions have been typically 100 fg for NCI-MS and 1 pg for EI-MS. NCI-MS was the preferred detection method for the determination of very low concentrations of these important contaminants in sewage sludge samples.  相似文献   

9.
Summary Mass spectra of 26 triazine herbicides including a few metabolites were measured with a Finnigan 4000 applying electron impact and chemical ionization using methane and ammonia as reactant gases monitoring both positive and negative ions. Chemical ionization was studied to find out possible advantages of ammonia over other reactant gases. Detection limits with SIM were measured with methane and ammonia. For most of the triazines ammonia was found to be superior to methane with respect to detection sensitivity.Part of this paper was presented at the Seventh International Congress of Pesticide Chemistry, Hamburg, August 5–10, 1990  相似文献   

10.
负离子化学电离质谱中负离子的相对丰度随着离子源压力、电子能量和离子源温度等质谱参数的改变发生了明显的变化。负离子形成过程中共振电子俘获和裂解电子俘获之间的竞争与质谱参数有关,其中以离子源温度的影响最为显著。热电子的比例随着离子源压力增大而减小,随着电子能量增大而增大。低离子源温度有利于共振俘获形成分子负离子,而高离子源温度则有利于裂解电子俘获形成碎片负离子,特别是热力学稳定的负离子。  相似文献   

11.
The detection of some chlordane compounds (heptachlor, cis-/trans-chlordane and cis-/trans-nonachlor) by positive ion chemical ionization (PICI) in an ion trap was studied using acetonitrile, acrylonitrile and dichloromethane as non-conventional reagent gases. These reagent gases initiated specific fragmentation reactions and resulted in different response factors. All reagent gases enabled detection limits in the low-pg range for heptachlor, whereas the detection limits of cis-/trans-chlordane and cis-/trans-nonachlor were in the mid-pg range. Additionally, the acetonitrile and dichloromethane PICI mass spectra of the cis- and trans-stereoisomers of chlordane and nonachlor were different.  相似文献   

12.
13.
A glow discharge ion source has been constructed for the mass spectrometric analysis of organic compounds. Characterization of the source has been made by studying the effect of pressure and discharge current on ionic distributions by anodic ion sampling along the discharge axis. Ion and electron densities and electronic temperatures have been calculated by using the single Langmuir probe technique to correlate the extraction efficiency with measured ion distributions and gain some insight into the ionization of organic molecules. The spectra obtained for several classes of organic compounds show that formation of parent-molecular ions by proton transfer, resulting partly from the background water molecules, is a major low energy process while charge transfer, Penning ionization, and electron ionization ace probably responsible for the fragmentation observed. The spectra result from the simultaneous occurrence of high and low energy reactions, and their structural information content is very high, yielding both molecular and extensive fragment ion information. The glow discharge ion source has proved to be essentially maintenance-free, easy to operate, stable, and can be used at reasonable mass resolution (up to 70001. The source also provides picogram range detection limits and has a linear response range of about six orders of magnitude, which makes it an interesting ion source for routine analysis. Preliminary work conducted with chromatographic interfaces indicates that its use can be easily extended to both gas and liquid chromatography.  相似文献   

14.
The performance of quadrupole ion traps using argon or air as the buffer gas was evaluated and compared to the standard helium only operation. In all cases a pure buffer gas, not mixtures of gases, was investigated. Experiments were performed on a Bruker Esquire ion trap, a Finnigan LCQ, and a Finnigan ITMS for comparison. The heavier gases were found to have some advantages, particularly in the areas of sensitivity and collision-induced dissociation efficiency; however, there is a significant resolution loss due to dissociation and/or scattering of ions. Additionally, the heavier gases were found to affect ion activation and deactivation during MS/MS, influencing the product ion intensities observed. Finally, the specific quadrupole ion trap design and the ion ejection parameters were found to be crucial in the quality of the spectra obtained in the presence of heavy gases. Operation with static pressures of heavy gases can be beneficial under certain design and operating conditions of the quadrupole ion trap.  相似文献   

15.
Gas-phase bimolecular and clustering reactions of acetonitrile in Xe, Kr, Ar, Ne and He were studied at high chemical ionization pressures in the new coaxial ion source at Auburn. With electron energies near the ionization threshold, the mass spectra are exceedingly simple and are comprised of [CH4CH]+ and clusters of [CH4CN]+ with various ligands such as H2O and CH3CN. At higher electron energies many other peaks appear. The intensities of the new peaks depend upon the ionization potential of the charge transfer gas, the ionizing electron energy and the ion source conditions, and are due to reactions of fragment ions. Residence time distributions at electron energies above the ionization threshold (∼ 30 eV) demonstrate that two molecular structures are present in the ion beam at m/z 42, one presumably is protonated acetonitrile ([CH3CNH]+) while the evidence indicates that the second species does not contain acidic hydrogens. With ionizing electron energies near threshold (∼ 10. 5 eV) only one structure is observed. Studies with electron energies near the ionization threshold under high-pressure chemical ionization conditions result in greatly simplified mass spectra and are possible only because of the coaxial geometry of the ion source.  相似文献   

16.
A novel pulse sequence improving the efficiency for electron capture dissociation (ECD) of an unmodified Fourier transform ion cyclotron resonance (FTICR) mass spectrometer by more than an order of magnitude is presented. Commercially available FTICR instruments are usually equipped with a filament-based electron source producing an electron beam that has a rather small cross section. An ideal overlap between the rotating ion cloud and the electron beam appears to be a prerequisite for a high ECD efficiency. A reduced interception of the ion cloud and the electron beam is probably due to the contribution of the magnetron motion to the trajectory of the ions, resulting in a precession about the z-axis of the instrument. By increasing the kinetic energy and therefore increasing the cyclotron radii of the precursor ions by resonant excitation, the overlap of the rotating ion cloud with the electron beam is improved. By use of this protocol the efficiency of electron capture is substantially increased and consequently the acquisition time of ECD spectra is reduced significantly. The capability of resonant excitation of the precursor ions during the irradiation with electrons is demonstrated for standard peptides. This approach is particularly valuable for analysis and characterization of O-glycosylated peptides. In addition to amino acid sequence information, the attachment site of the labile glycan moiety is determined, and also radical-site-induced fragmentations of the glycosidic bonds are observed.  相似文献   

17.
Negative ion mass spectra obtained under chemical ionization conditions (NCI) employing methane, isobutane or methylene chloride as the enhancement gas are presented for a series of chlorinated polycyclic insecticides. All of the compounds examined except 1-hydroxychlordene yielded molecular anions of substantial relative abundance (6 to 39%). The most significant features of the spectra are the prominent peaks at masses greater than that of the molecule ion formed via ionmolecule association reactions. Peaks representing association of the parent molecule with ionic species such as H?, O?, OH?, Cl?, H2OCl?, HCl2?, ClO? and Cl3? were observed in some cases. The base peak in all spectra was associated with the isotopic group of the [M + Cl]? on if contributions from other negative, even electron ions of low mass values present in high concentrations (Cl?, H2OCl? Cl2? and HCl2?) are neglected. Fragmentation processes were limited to elimination reactions involving loss of combinations of the even electron neutral species H, Cl and HCl. In addition, fragmentation resulting from a nucleophilic radical displacement of Cl by O? from the parent molecule was observed in all cases except 1-hydroxychlordene when the source was modestly wet (methane as reactant gas). NCI mass spectra of polycyclic chlorinated pesticides are reproducible, intense, interpretable in terms of classical carbanion chemistry and thus may have important analytical utility, particularly when used in conjunction with positive electron-impact and chemical ionization mass spectral methods and selective use of different enhancement gases.  相似文献   

18.
Here, we show that to perform activated ion electron capture dissociation (AI-ECD) in a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer equipped with a CO2 laser, it is necessary to synchronize both infrared irradiation and electron capture dissociation with ion magnetron motion. This requirement is essential for instruments in which the infrared laser is angled off-axis, such as the Thermo Finnigan LTQ FT. Generally, the electron irradiation time required for proteins is much shorter (ms) than that required for peptides (tens of ms), and the modulation of ECD, AI ECD, and infrared multiphoton dissociation (IRMPD) with ion magnetron motion is more pronounced. We have optimized AI ECD for ubiquitin, cytochrome c, and myoglobin; however the results can be extended to other proteins. We demonstrate that pre-ECD and post-ECD activation are physically different and display different kinetics. We also demonstrate how, by use of appropriate AI ECD time sequences and normalization, the kinetics of protein gas-phase refolding can be deconvoluted from the diffusion of the ion cloud and measured on the time scale longer than the period of ion magnetron motion.  相似文献   

19.
Structural and molecular ion information on perfluorocarbons (PFCs) can be obtained by charge-exchange reactions of nitrogen or oxygen radical cations with PFCs; such information usually cannot be obtained by the electron impact or negative ion chemical ionization methods. Charge-exchange reactions occurred when 0.5-1.0 Torr (1 Torr as 133.3 Pa) of nitrogen, air or other gases was introduced into the chemical ionization source of a mass spectrometer, with electron energies ranging from 55 to 230 eV. Changing the repeller voltages and electron energies had little effect on the appearance of charge-exchange mass spectra of PFCs. However, when air or nitrogen was introduced in the direction opposite to sample flow, more intense molecular ions and/or higher mass fragment ions were obtained at the cost of a small loss of sensitivity. The charge-exchange mass spectrum of perfluoro-1,3-dimethyladamantane is very similar to the high-energy collisionally induced dissociation spectrum of its molecular radical cation. This technique provides an important validation tool without the use of tandem mass spectrometry for the structure determination of PFC isomers.  相似文献   

20.
The abuse of nortestosterone in sport is an important problem in doping-control analysis. In order to detect the main urinary metabolite of nortestosterone, norandrosterone (NA), sensitive and specific methodology is necessary. In this context the use of a low-cost mass spectrometric detector such as the Finnigan MAT ion-trap detector (ITD) was studied. The electron ionization (EI) and positive-ion chemical ionization (PICI) mass spectra of the methoxime-trimethylsilyl, trimethylsilyl-enol trimethylsilyl ether and pentafluoropropionic ester derivatives of NA are described. The limits of detection of these derivatives are compared with those obtained by the Hewlett-Packard mass selective detector (MSD), another low-cost mass spectrometric detector and operating only in the EI mode. For the derivatives of the reference standard of NA the ITD has in the EI mode the same limit of detection, in the range of 0.5 to 1 ng injected on the column, as the MSD. However, under these conditions the ITD provides more spectrometric information, because it gives full scan data. Moreover, with the same or even improved limits of detection the ITD can operate in the PICI mode. On the other hand, for the analysis of NA isolated from urine samples, the performance of the MSD was better than that of the ITD. The ion trapping technique is probably limited when the chemical background is high.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号