首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用原子力显微镜和反射吸收红外光谱研究了在基底上无规聚甲基丙烯酸甲酯立构复合结构的形成和结构特征,纯等规和间规聚甲基丙烯酸甲酯与等规/间规混合物(有立构复合结构生成)表面聚集形貌比较的结果表明,立构复合结构的生成使聚甲基丙烯酸甲酯在基底上形成树枝状的聚集形貌,因此无规聚甲基丙烯酸甲酯在基底上的树枝状聚集形貌表明了其内部生成了立构复合结构,而且这种结构对聚集形貌产生了重大影响,反射吸收红外光谱的研究表明,在基底表面薄膜中无规聚甲基丙烯酸甲酯主链结构比在本体厚膜中的更加伸展,更有利于立构复合结构的生成.  相似文献   

2.
Summary Thermally stimulated depolarization currents were investigated for films obtained from supernatant layer of mixed solutions ofi- ands-PMMA ini/s weight ratio of 1/1 and 1/2. The results showed that the degree of stereocomplex formation is not uniform: the mixed solutions contain the insoluble and the soluble stereocomplex aggregates and in some case the residual (free)i-PMMA. The stereocomplex is formed ini/s weight ratio of 1/2.  相似文献   

3.
Spontaneous stereocomplex aggregation of diblock poly(styrene)‐b‐poly(L ‐lactide) PS‐b‐PLLA/poly(D ‐lactide) PDLA pairs has been investigated under ambient temperature in tetrahydrofuran solution. First, diblock PS260b‐PLLA165 and PS260b‐PDLA162 bearing similar lengths of respective PLLA and PDLA blocks were synthesized through controlled atom‐transfer radical polymerization of styrene, and a subsequent living ring‐opening polymerization of optically pure lactides, and their structures were further characterized by nuclear magnetic resonance spectroscopy (NMR) and gel‐permeation chromatography (GPC). Subsequently, new enantiomeric poly(D ‐lactide) stabilized core‐shell fluorescent CdSe quantum dots (CdSe/PDLA QD) were designed and prepared as sensitive fluorescence labels to shed new lights on the spontaneous stereocomplex aggregation in THF, which was mediated by stereocomplexation of the PLLA and PDLA chains. Upon simply mixing two individual THF solution of diblock PS260b‐PLLA165 and HO‐PDLA30‐SH, spontaneous stereocomplex aggregation was studied, and the aggregated uniform spherical particles were observed by scanning electronic microscopy (SEM) to exhibit average particle diameters of 2.0 μm. Finally, utilizing the prepared CdSe/PDLA QDs as new fluorescent labels, morphologies of the spontaneous aggregates by new diblock PS260b‐PLLA165/HO‐PDLA30‐SH pair were for the first time directly visualized by a confocal laser scanning fluorescence microscopy (CLSFM). These results might suggest alternative ways to simply prepare functional fluorescent particles with tunable diameter sizes and would be helpful to understand the mechanism of stereocomplex particle aggregation. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1393–1405, 2009  相似文献   

4.
A novel class of stereocomplexes is described by the interaction of helically complementary poly(phenylacetylene)s (PPAs) carrying an α-methoxy-α-trifluoromethylphenylacetamide pendant group. The formation of the stereocomplex requires the presence of cis amide bonds on the external crest of the polymer to provide efficient cooperative supramolecular hydrogen bonding between matching enantiomeric helical structures. The interlocking of the chains gives rise to supramolecular fiber-like aggregates that, at higher concentrations, result in gels. The modification of the cistrans amide conformation at the pendant groups allows the controlled formation and cleavage of the stereocomplex due to a dramatic change between the intermolecular and intramolecular hydrogen bond interactions.  相似文献   

5.
We report a novel and versatile method for constructing a supramolecular nanosphere and nanonetwork based on isotactic and syndiotactic C60-end-capped poly(methyl methacrylate)s (it- and st-PMMA-C60's) through their stereocomplex formation combined with self-assembly of the terminal C60. The stereoregular PMMA-C60's with a precisely controlled structure including molecular weight, its distribution, tacticity, and the chain-end structure were synthesized by the stereospecific anionic living polymerizations of methyl methacrylate followed by end-capping with C60, and their structures were proven by size exclusion chromatography, NMR, UV-vis, and MALDI-TOF-MS analyses. The stereoregular PMMA-C60's self-assembled to form a core-shell aggregate with C60 as the core and the PMMA chains as the shell in H2O/CH3CN (1/9, v/v) due to the solvophobic interaction of the C60 units. These it- and st-PMMA-C60 aggregates further supramolecularly assembled through iterative stereocomplex formation into nanonetworks in which the self-assembled C60 clusters were robustly connected with two- and three-dimensional arrangements. In addition, when the it- and st-PMMA-C60's were simultaneously mixed, self-assembly of the C60 units and stereocomplex formation of the it- and st-PMMA chains took place at once, resulting in the formation of uniformly sized spherical nanoparticles with resistance to heat. Similar nanonetwork architectures can be produced using it-PMMA-C60 clusters and st-PMMA prepolymers as the binder.  相似文献   

6.
Stereocomplexation is one of the approaches to improve polylactide's properties. Along with improving its properties, it also limits stereocomplex formation through solution and stereocomplex memory. The graft structure and presence of nanoparticles have a synergetic effect, improving the stereocomplex formation and its memory. The bio-stereocomplex-nanocomposite materials are generated by stereocomplexation of polylactide-graft-acetylated cellulosic nanowhiskers in the solution. The graft structure containing well-distributed acetylated cellulose nanowhiskers results in unusual stereocomplexation in the solution and influences the stereocomplex memory of the bio-stereocomplex-nanocomposite materials. Perfect stereocomplexes are easily obtained in a relatively short mixing time (5 min) from various solution concentrations up to 20 % (w/v). The bio-stereocomplex-nanocomposites have excellent stereocomplex memory to re-form the stereocomplex after melting, which is the main limitation of stereocomplex materials in industrial processes. This fully bio-based material is a potential ecofriendly candidate for the future.  相似文献   

7.
The heat of formation ΔH of the stereocomplex of iso + syndiotactic poly(methyl methacrylate) in a 1 per cent solution in dimethylformamide and in toluene was measured. From the concentration dependence of ΔH it may be inferred that multimolecular aggregates are formed, with a composition given by the ratio syn: iso = 1·5: 1 to 2: 1. The measurements also indicate a strong dependence of the thermal effect on the quality of the solvent and on the tacticity of both polymer components.  相似文献   

8.
Stereoregular poly(methyl methacrylate)s (PMMAs) were stepwise assembled on a quartz crystal microbalance (QCM) substrate after the immersion of the QCM into alternating acetonitrile solutions at ambient temperature. A quantitative QCM analysis at each step showed stereocomplex formation on the substrate surface. The adsorption of bovine serum albumin (BSA) onto stereocomplex films with a molecularly regulated nanostructure was analyzed quantitatively. The adsorption constant and the maximum adsorption amount, calculated by the assumption of Langmuir‐type adsorption, showed that BSA adsorbed with a relatively weak interaction onto the stereocomplex films. The BSA adsorption onto the stereocomplex films occurred in an end‐on manner, with a smaller adsorption constant than for that onto individual spin‐coated films. The amount of BSA adsorbed was significantly affected by the molecular weight of syndiotactic PMMA. Attenuated total reflection spectra indicated that BSA adsorbed onto the films with or without denaturing. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1807–1812, 2003  相似文献   

9.
The structure and stereocomplex formation of multi-stereoblock poly(methyl methacrylates) in three different solvents, acetone, tetrahydrofuran (THF) and chloroform, corresponding to strongly-, weakly- and non-complexing solvent, respectively, were investigated by a combination of static and dynamic laser light scattering. Our results revealed that the stereocomplex was caused by weak interactions, and could be melted at higher temperatures. In THF, the intermolecular and intramolecular interactions could be clearly separated at lower temperatures, and the structure of aggregated chains was linear. In acetone, a more compact structure was obtained, which was corroborated by the fact that the stereocomplex had a higher melting temperature than in THF.  相似文献   

10.
The effects of chain extension and melt blending temperature on the stereocomplex formation of 50/50 (w/w) poly(L-lactide) (PLLA)/poly(D-lactide) (PDLA) blends or stereocomplex polylactides (scPLAs) were investigated. Joncryl® ADR 4368, a styrene-acrylic multifunctional oligomeric agent, was used as a chain extender. Differential scanning calorimetry and X-ray diffractometry were used to confirm the stereocomplex formation of the PLLA/PDLA blends. Melt flow indices (MFI) of the blends were also determined. The stereocomplex crystallinities gradually decreased with increasing blending temperature and Joncryl® ADR 4368 ratio. The significant decrease in the MFI of scPLAs is believed to be attributed to chain extension at the blending temperatures of 170 °C and 200 °C. The MFI values of scPLAs decreased as the Joncryl® ADR 4368 ratio and blending temperature increased. The results indicated that the chain extension has an effect on the stereocomplexation and it improved the melt strength of the scPLAs.  相似文献   

11.
We present a novel method for size-selectively separating mixtures of nanoparticles in aqueous media utilizing the inherent chemical recognition properties of DNA and the cooperative binding properties of DNA-functionalized gold nanoparticles. We have determined that the melting temperatures (T(m)s) of aggregates formed from nanoparticles interconnected by duplex DNA are dependent upon particle size. This effect is proposed to derive from larger contact areas between the larger particles and therefore increased cooperativity, leading to higher T(m)s. The separation protocol involves taking two aliquots of a mixture of particles that vary in size and functionalizing them with complementary DNA. These aliquots are mixed at a temperature above the T(m) for aggregates formed from the smaller particles but below the T(m) for aggregates formed from the larger particles. Therefore, the aggregates that form consist almost exclusively of the larger particles and can be easily separated by sedimentation and centrifugation from the smaller dispersed particles. This unusual size-dependent behavior and separation protocol are demonstrated for three binary mixtures of particles and one ternary mixture.  相似文献   

12.
Methoxy poly(ethylene glycol)–poly(L ‐histidine)–poly(lactide) (mPEG45–PH30–PLA82) triblock copolymers self‐assemble into nanoparticles by sterocomplexation. The properties of the stereocomplex nanoparticles including morphology, stability, and biocompatibility are investigated. The results reveal that the stereocomplexation between PLLA and PDLA segments could prevent the aggregation of the nanoparticles when the pH value is around 6.8. The mean diameter of the stereocomplex nanoparticles is stabilized at about 100 nm when the pH values are changed from 7.9 to 5.0. The cytotoxicity of the stereocomplex nanoparticles is evaluated, and the results demonstrate that the stereocomplexation could decrease the cytotoxicity of the PDLA segments.  相似文献   

13.
The higher order structure of stereocomplex‐type poly(lactic acid) melt‐spun fibers of an equimolar blend of poly(L ‐lactic acid) and poly(D ‐lactic acid) was analyzed with wide‐angle X‐ray diffraction (WAXD) and birefringence measurements. Two different crystalline structures were observed in the fibers: α‐form homocrystals and stereocomplex crystals. The weight fractions of the two crystals were estimated with the WAXD integrated intensity data. The crystalline orientation factors were obtained from the WAXD measurements. Well‐oriented homocrystals formed during a drawing process at the crystallization temperature of the homocrystal. Drawing above this temperature caused the stereocomplex crystal to be formed. The crystalline orientation tended to be lower with increasing drawing temperatures. Through the combination of the intrinsic birefringence and the fractions of the α‐form homocrystals and stereocomplex crystals, the birefringence of the amorphous phase was evaluated. The amorphous birefringence stayed positive and decreased with increasing drawing temperature. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 218–228, 2007  相似文献   

14.
We report the formation and characterization of stable dispersions of hybrid nanoparticles in solution formed via stereocomplexation of enantiomeric poly(lactide) hybrid star polymers. The hybrid starlike polymers, having polyhedral oligomeric silsesquioxane (POSS) nanocages as the core and either poly(L-lactide) (PLLA) or poly(D-lactide) (PDLA) as the arms, are synthesized via ring-opening polymerization of lactide using octafunctional POSS as the macroinitiator. In the solid state, differential scanning calorimetry and wide-angle X-ray scattering measurements confirmed the formation of the stereocomplex in the mixture of POSS-star-PLLA and POSS-star-PDLA (50:50, wt %). In a solution of the same mixture in tetrahydrofuran (THF), sterocomplexation leads to formation of hybrid nanaoparticles. Detailed accounts of the nanoparticle formation and influence of aging and concentration have been presented. It was observed that at low concentration the stereocomplexed nanaoparticles remain stable over 45 days and are not sensitive to dilution, suggesting the formation of a stable hybrid nanoparticle dispersion in solution. In contrast, the aggregates of the individual POSS-star-PLLA or POSS-star-PDLA in THF, formed via weak solvophobic interactions, tended to disintegrate into smaller aggregates on dilution. Exploiting the PLLA-PDLA stereocomplexation with an appropriate molecular design can be a versatile route to develop stable organic/inorganic hybrid nanoparticle dispersions.  相似文献   

15.
The structure of aggregates formed from poly(vinyl butyral) (PVB) in tetrahydrofuran (THF) was studied by transmission electron microscopy (TEM). We have found that the primary associated particles are nearly spherical and, as the association advances, the particles lengthen. Eventually aggregates branch to form a three-dimensional network. The bulk PVB was investigated by scanning electron microscopy (SEM). We have found that the bulk PVB grains are aggregates of the particles the shape and dimension of which are similar to those of the primary associated particles formed in PVB solution. © 1994 John Wiley & Sons. Inc.  相似文献   

16.
The crystallinity and porosity of all-inorganic dodecatungstophosphate M3PW12O40 (M=Cs, NH4, Ag, denoted as MPW) particles are controlled by the changes in the synthetic temperatures and countercations. The MPW particles can be classified into three groups by the crystallinity and porosity: (i) mesoporous "disordered" aggregates, (ii) microporous "self-organized" aggregates, and (iii) nonporous single crystals. The formation and growth mechanism of MPW particles is expressed by three steps: formation of nanocrystallites, assembly of the nanocrystallites to form aggregates, and the growth of aggregates by the attachment of nanocrystallites. The time courses of the turbidity of the synthetic solution, the concentration of the nanocrystallites, and the average particle sizes of MPW particles are well reproduced by the calculation based on the mechanism.  相似文献   

17.
Poly(l-lactide) (PLLA)/poly(d-lactide) (PDLA) blend specimens containing only stereocomplex as crystalline species, together with those of pure PLLA and PDLA specimens, were prepared by solution crystallization using acetonitrile as the solvent. Their accelerated hydrolytic degradation was carried out in phosphate-buffered solution at elevated temperatures of 70-97 °C up to the late stage. During hydrolytic degradation, the stereocomplex crystalline residues were first traced by gel permeation chromatography. Similar to the hydrolytic degradation of pure PLLA and PDLA specimens, the hydrolytic degradation of stereocomplexed PLLA/PDLA blend specimens slowed down at the late stage when most of the amorphous chains were removed and crystalline resides were formed and degraded. The estimated activation energy for hydrolytic degradation of stereocomplex crystalline residues (97.3 kJ mol−1) is significantly higher than 75.2 kJ mol−1 reported for α-form of PLLA crystalline residues. This indicates that the stereocomplex crystalline residues showed the higher hydrolysis resistance compared to that of α-form of PLLA crystalline residues.  相似文献   

18.
The colloidal stability of TiO2 dispersions in aqueous solutions was studied. Aqueous solutions of ATLAS G-3300 (1.57 x 10(-3) mol/l), TRITON X-100 (5 x 10(-5) mol/l), and PMAA (4 x 10(-6) and 5.81 x 10(-3) mol/l) have been used as medium for redispergation of TiO2 particles. Stability of dispersions was investigated at different pH values by two different methods. By using analytical centrifuge the sedimentation velocity of TiO2 particles was directly measured and by means of light scattering the particle size of dispersed particles has been monitored. Combination of these two methods allowed determination of the aggregation degree of TiO2 particles as well as structure of the aggregates formed in aqueous phase. It has been found that redispergation process does not provide complete separation of virgin TiO2 particles. Even in the case of stable dispersions some aggregates were found, which consisted of 2-4 virgin TiO2 particles. With increasing colloidal stability of dispersions aggregates appear to be spherically shaped. In the system where TRITON X-100 was used, formation of secondary aggregates by fusion of primary ones was observed.  相似文献   

19.
A nucleation efficiency scale for isotactic poly(L ‐lactide) (PLLA) was obtained with self‐nucleation and nonisothermal differential scanning calorimetry experiments. The maximum nucleation efficiency occurred at the highest concentration of self‐nucleating sites, and the minimum efficiency occurred in the absence of these sites (pure PLLA polymer melt). Blends of PLLA and isotactic poly(D ‐lactide) (PDLA) led to the formation of a 1/1 stereocomplex. In comparison with the homopolymer (PLLA), the stereocomplex had a higher melting temperature and crystallized at higher temperatures from the melt. Small stereocomplex crystallites were formed in PLLA/PDLA blends containing low concentrations of PDLA. These crystallites acted as heterogeneous nucleation sites for subsequent PLLA crystallization. Using the PLLA nucleation efficiency scale, we evaluated a series of PLLA/PDLA blends (0.25–15 wt % PDLA). A maximum nucleation efficiency of 66% was observed at 15 wt % PDLA. The nucleation efficiency was largely dependent on the thermal treatment of the sample. The nucleating ability of the stereocomplex was most efficient when it was formed well before PLLA crystallization. According to the efficiency scale, the stereocomplex was far superior to talc, a common nucleating agent for PLLA, in its ability to enhance the rate of PLLA crystallization. In comparison with the PLLA homopolymer, the addition of PDLA led to reduced spherulite sizes and a reduction in the overall extent of PLLA crystallization. The decreased extent of crystallization was attributed to the hindered mobility of the PLLA chains due to tethering by the stereocomplex. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 300–313, 2001  相似文献   

20.
Isotactic (i) and syndiotactic (s) PMMA polymers differ markedly in the physical properties. The fact that these physically unlike macromolecules strongly attract each other with the resultant formation of stereocomplexes is indeed remarkable. Although stereoregular PMMAs and the stereocomplex have been studied over decades, their conformational characteristics are yet a matter of controversy. We performed variable-temperature FTIR measurements on i-PMMA and s-PMMA, followed by a detailed analysis of the temperature dependence of integrated band intensities for C-O stretching modes in the region 1050-1300 cm−1 and achieved, for the first time, the unambiguous conformational assignment for the C-O bands. This enabled reliable IR spectroscopic determination of conformational energies for the backbone and for the ester group. Besides, a comparative analysis of the C-O band intensities in the FTIR spectra of single-component and stereocomplex PMMA films, based on the established band assignments, revealed new features in the structure of the stereocomplex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号