首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A stereospecific high-yield glycosylation of preformed fully aromatic pyrroles has been accomplished for the first time. Reaction of the sodium salt of pyrrole-2-carbonitrile ( 1a ) and pyrrole-2,4-dicarbonitrile ( 1b ) with 1-chloro-2-deoxy-3,5-di-O-p-toluoyl-α-D-erythro-pentofuranose ( 2 ) gave exclusively the corresponding blocked nucleosides with β-anomeric configuration 3a and 3b , which on deprotection gave 1-(2-deoxy-β-D-erythro-pentofuranosyl) derivatives of 1a ( 3c ) and 1b ( 3d ). Functional group transformation of 3c and 3d provided a number of 2-monosubstituted 4a-c and 2,4-disubstituted 4d-f derivatives of 1-(2-deoxy-β-D-erythro-pentofuranosyl)pyrrole. Similar glycosylation of the sodium salt of 1a and 1b with 1-chloro-2,3,5-tri-O-benzyl-α-D-arabinofuranose ( 5 ) and further functional group transformation of the intermediate blocked nucleosides 6a and 6b provided 1-β-D-arabinofuranosyl derivatives of pyrrole-2-carboxamide ( 7b ) and pyrrole-2,4-dicarboxamide ( 7d ). The synthetic utility of this glycosylation procedure for the preparation of 1-β-D-ribofuranosylpyrrole-2-carbonitrile ( 12 ) has also been demonstrated by reacting the sodium salt of 1a with 1-chloro-2,3-O-isopropylidene-5-O-(t-butyl)dimethylsilyl-α-D-ribofuranose ( 10 ) and subsequent deprotection of the blocked intermediate 11 . This study provided a convenient route to the preparation of aromatic pyrrole nucleosides.  相似文献   

2.
Several thiazole nucleosides structurally related to tiazofurin (1) and ARPP (2) were prepared, in order to determine whether these nucleosides had enhanced antitumor/antiviral activities. Ring closure of 1-(2,3,5-tri-O-benzoyl-β-D-ribofuranosyl)thiourea (4) with ethyl bromopyruvate (5a) gave ethyl 2-(2,3,5-tri-O-benzoyl-β-D-ribofuranosylamino)thiazole-4-carboxylate (6a) . Treatment of 6a with sodium methoxide furnished methyl 2-(β-D-ribopyranosylamino)thiazole-4-carboxylate (9) . Ammonolysis of the corresponding methyl ester of 6a gave a unique acycloaminonucleoside 2-[(1R, 2R, 3R, 4R)(1-benzamido-2,3,4,5-tetrahydroxypentane)amino]-thiazole-4-carboxamide (7a) . Direct glycosylation of the sodium salt of ethyl 2-mercaptothiazole-4-carboxylate (12) with 2,3,5-tri-O-benzoyl-D-ribofuranosyl bromide (11) gave the protected nucleoside 10 , which on ammonolysis provided 2-(β-D-ribofuranosylthio)thiazole-4-carboxamide (3b) . Similar glycosylation of 12 with 2-deoxy-3,5-di-O-p-toluoyl-α-D-erythro-pentofuranosyl chloride (13) , followed by ammonolysis gave 2-(2-deoxy-β-D-ribofuranosylthio)thiazole-4-carboxamide (3c) . The structural assignments of 3b, 7a , and 9 were made by single-crystal X-ray analysis and their hydrogen bonding characteristics have been studied. These compounds are devoid of any significant antiviral/antitumor activity in vitro.  相似文献   

3.
A simple and high-yield synthesis of biologically significant 2′-deoxy-6-thioguanosine ( 11 ), ara-6-thioguanine ( 16 ) and araG ( 17 ) has been accomplished employing the Stereospecific sodium salt glycosylation method. Glycosylation of the sodium salt of 6-chloro- and 2-amino-6-chloropurine ( 1 and 2 , respectively) with 1-chloro-2-deoxy-3,5-di-O-(p-toluoyl)-α-D-erythro-pentofuranose ( 3 ) gave the corresponding N-9 substituted nucleosides as major products with the β-anomeric configuration ( 4 and 5 , respectively) along with a minor amount of the N-7 positional isomers ( 6 and 7 ). Treatment of 4 with hydrogen sulfide in methanol containing sodium methoxide gave 2′-deoxy-6-thioinosine ( 10 ) in 93% yield. Similarly, 5 was transformed into 2′-deoxy-6-thioguanosine (β-TGdR, 11 ) in 71 % yield. Reaction of the sodium salt of 2 with 1-chloro-2,3,5-tri-O-benzyl-α-D-arabinofuranose ( 8 ) gave N-7 and N-9 glycosylated products 13 and 9 , respectively. Debenzylation of 9 with boron trichloride at ?78° gave the versatile intermediate 2-amino-6-chloro-9-β-D-arabinofuranosyl-purine ( 14 ) in 62% yield. Direct treatment of 14 with sodium hydrosulfide furnished ara-6-thioguanine ( 16 ). Alkaline hydrolysis of 14 readily gave 9-β-D-arabinofuranosylguanine (araG, 17 ), which on subsequent phosphorylation with phosphorus oxychloride in trimethyl phosphate afforded araG 5′-monophosphate ( 18 ).  相似文献   

4.
2-Amino-9-β-D-ribofuranosylpurine-2-sulfonamide (2-sulfamoyladenosine, 4 ), a congener of sulfonosine ( 3 ), was synthesized by four different routes. Acid catalyzed fusion of 6-chloropurine-2-sulfonyl fluoride ( 5 ) with 1,2,3,5-tetra-O-acetyl-β-D-ribofuranose ( 8 ) gave a good yield of 6-chloro-9-(2,3,5-tri-O-acetyl-β-D-ribofuranosyl)purine-2-sulfonyl fluoride ( 9 ). Ammonolysis of 9 furnished 4 . Lewis acid catalyzed glycosylation of the trimethylsilyl derivative of either 6-chloropurine-2-sulfonamide ( 6 ) or 6-aminopurine-2-sulfonamide ( 7 ) with 8 gave the corresponding N9-glycosylated products, 10 and 11 , respectively, which on ammonolysis gave 4 . Amination of 2-thioadenosine ( 12 ) with chloramine solution gave the sulfenamide derivative 13 , which on subsequent oxidation with m-chloroperoxybenzoic acid furnished an alternate route to 4 . The structure of 4 was established by single-crystal X-ray diffraction studies. 2-Sulfamoyladenosine ( 4 ) is devoid of significant inhibitory activity against L1210 leukemia in mice.  相似文献   

5.
The 2′-deoxyribofuranose analog of the naturally occurring antibiotics SF-2140 and neosidomycin were prepared by the direct glycosylation of the sodium salts of the appropriate indole derivatives, with 1-chloro-2- deoxy-3,5-di-O-p-toluoyl-α-D-erythropentofuranose ( 5 ). Thus, treatment of the sodium salt of 4-methoxy-1H- indol-3-ylacetonitrile ( 4a ) with 5 provided the blocked nucleoside, 4-methoxy-1-(2-deoxy-3,5-di-O-p-toluoyl-β- D-erythropentofuranosyl)-1H-indol-3-ylacetonitrile ( 6a ), which was treated with sodium methoxide to yield the SF-2140 analog, 4-methoxy-1-(2-deoxy-β-D-erythropentofuranosyl)-1H-indol-3- ylacetonitrile ( 7a ). The neosidomycin analog ( 8 ) was prepared by treatment of the sodium salt of 1H-indol-3-ylacetonitrile ( 4b ) with 5 to obtain the blocked intermediate 1-(2-deoxy-3,5-di-O-p-toluoyl-β-D-erythropentofuranosyl) ?1H-indol-3-ylace-tonitrile ( 6b ) followed by sodium methoxide treatment to give 1-(2-deoxy-β-D-erythropentofuranosyl)-1H- indol-3-ylacetonitrile ( 7b ) and finally conversion of the nitrile function of 7b to provide 1-(2-deoxy-β-D- erythropentofuranosyl)-1H-indol-3-ylacetamide ( 8 ). In a similar manner, indole ( 9a ) and several other substituted indoles including 1H-indole-4-carbonitrile ( 9b ), 4-nitro-1H-indole ( 9c ), 4-chloro-1H-indole-2-carboxamide ( 9d ) and 4-chloro-1H-indole-2-carbonitrile ( 9e ) were each glycosylated and deprotected to provide 1-(2-deoxy-β-D-erythropentofuranosyl)-1H-indole ( 11a ), 1-(2-deoxy-β-D-erythropentofuranosyl)-1H-indole-4- carbonitrile ( 11b ), 4-nitro-1-(2-deoxy-β-D-erythropentofuranosyl)-1H-indole ( 11c ), 4-chloro-1-(2-deoxy-β-D- erythropentofuranosyl)-1H-indole-2-carboxamide ( 11d ) and 4-chloro-1-(2-deoxy-β-D-erythropentofuranosyl)- 1H-indole-2-carbonitrile ( 11e ), respectively. The 2′-deoxyadenosine analog in the indole ring system was prepared for the first time by reduction of the nitro group of 11c using palladium on carbon thus providing 4-amino-1-(2-deoxy-β-D-erythropentofuranosyl)- 1H-indole ( 16 , 1,3,7-trideaza-2′-deoxyadenosine).  相似文献   

6.
6-Amino-1-(2-deoxy-β-D-erthro-pentofuranosyl)pyrazolo[4,3-c]pyridin-4(5H)-one ( 5 ), as well as 2-(β-D-ribofuranosyl)- and 2-(2-deoxy-β-D-ribofuranosyl)- derivatives of 6-aminopyrazolo[4,3-c]pyridin-4(5H)-one ( 18 and 22 , respectively) have been synthesized by a base-catalyzed ring closure of pyrazole nucleoside precursors. Glycosylation of the sodium salt of methyl 3(5)-cyanomethylpyrazole-4-carboxylate ( 6 ) with 1-chloro-2-deoxy-3,5-di-O-p-toluoyl-α-D-erythro-pentofuranose ( 8 ) provided the corresponding N-1 and N-2 glycosyl derivatives ( 9 and 10 , respectively). Debenzoylation of 9 and 10 with sodium methoxide gave deprotected nucleosides 14 and 16 , respectively. Further ammonolysis of 14 and 16 afforded 5(or 3)-cyanomethyl-1-(2-deoxy-β-D-erythro-pentofuranosyl)pyrazole-4-carboxamide ( 15 and 17 , respectively). Ring closure of 15 and 17 in the presence of sodium carbonate gave 5 and 22 , respectively. By contrast, glycosylation of the sodium salt of 6 with 2,3,5-tri-O-benzoyl-D-ribofuranosyl bromide ( 11 ) or the persilylated 6 with 1-O-acetyl-2,3,5-tri-O-benzoyl-β-D-ribofuranose gave mainly the N-2 glycosylated derivative 13 , which on ammonolysis and ring closure furnished 18 . Phosphorylation of 18 gave 6-amino-2-β-D-ribofuranosylpyrazolo[4,3-c]pyridin-4(5H)-one 5′-phosphate ( 19 ). The site of glycosylation and the anomeric configuration of these nucleosides have been assigned on the basis of 1H nmr and uv spectral characteristics and by single-crystal X-ray analysis of 16 .  相似文献   

7.
An efficient synthesis of the unknown 2′-deoxy-D-threo-tubercidin ( 1b ) and 2′, 3′-dideoxy-3′-fluorotubercidin ( 2 ) as well as of the related nucleosides 9a, b and 10b is described. Reaction of 4-chloro-7-(2-deoxy-β-D-erythro-pentofuranosyl)-7H-pyrrolo[2,3-d]pyrimidine ( 5 ) with (tert-butyl)diphenylsilyl chloride yielded 6 which gave the 3′-keto nucleoside 7 upon oxidation at C(3′). Stereoselective NaBH4 reduction (→ 8 ) followed by deprotection with Bu4NF(→ 9a )and nucleophilic displacement at C(6) afforded 1b as well as 7-deaza-2′-deoxy-D-threo-inosine ( 9b ). Mesylation of 4-chloro-7-{2-deoxy-5-O-[(tert-butyl)diphenylsilyl]-β-D-threo-pentofuranosyl}-7H-pyrrolo[2,3-d]-pyrimidine ( 8 ), treatment with Bu4NF (→ 12a ) and 4-halogene displacement gave 2′, 3′-didehydro-2′, 3′-dideoxy-tubercidin ( 3 ) as well as 2′, 3′-didehydro-2′, 3′-dideoxy-7-deazainosne ( 12c ). On the other hand, 2′, 3′-dideoxy-3′-fluorotubercidin ( 2 ) resulted from 8 by treatment with diethylamino sulfurtrifluoride (→ 10a ), subsequent 5′-de-protection with Bu4NF (→ 10b ), and Cl/NH2 displacement. 1H-NOE difference spectroscopy in combination with force-field calculations on the sugar-modified tubercidin derivatives 1b , 2 , and 3 revealed a transition of the sugar puckering from the 3′T2′ conformation for 1b via a planar furanose ring for 3 to the usual 2′T3′ conformation for 2.  相似文献   

8.
The synthesis of the 7-deaza-2′-deoxyinosine derivatives 3a – c with chloro, bromo, and iodo substituents at position 7 is described. Glycosylation of the 7-halogenated 6-chloro-7-deazapurines 4a – c or of the 7-halogenated 6-chloro-7-deaza-2-(methylthio)purines 9a – c with 2-deoxy-3,5-di-O-(4-toluoyl)-α-D -erythro-pentofuranosyl chloride ( 5 ) furnished the intermediates 7a – c and 11a – c , respectively, which gave, upon deprotection, the desired nucleosides 3a – c .  相似文献   

9.
A simple synthesis of tubercidin ( 1 ), 7-deazaguanosine ( 2 ) and 2′-deoxy-7-deazaguanosine ( 14 ) has been accomplished using the sodium salt glycosylation procedure. Reaction of the sodium salt of 4-chloro- and 2-amino-4-chloro-pyrrolo[2,3-d]pyrimidine, 3 and 4 , respectively, with 1-chloro-2,3-0-isopropylidene-5-0-(t-butyl)dimethylsilyl-α-D-ribofuranose ( 5 ) gave the corresponding protected nucleosides 6n and 7 with β-anomeric configuration. Deprotection of 6 provided 8 , which on heating with methanolic ammonia gave tubercidin ( 1 ) in excellent yield. Functional group transformation of 7 , followed by deisopropylidenation gave 2-aminotubercidin ( 10 ) and 2-amino-7-β-D-ribofuranosylpyrrolo[2,3-d]pyrimidine-4(3H)-thione ( 11 ). Treatment of 7 with 1N sodium methoxide followed by exposure to aqueous trifluoroacetic acid, and ether cleavage furnished 7-deazaguanosine ( 2 ). 2′-Deoxy-7-deazaguanosine ( 14 ) and 2′-deoxy-7-deaza-6-thioguano-sine ( 18 ) were also prepared by using similar sequence of reactions employing 4 and 1-chloro-2-deoxy-3,5-di-O-p-toluoyl-α-D-erythro-pentofuranose ( 15 ).  相似文献   

10.
The reaction of the bromo-substituted naphthalene 1 with the alkanethiolate anions 2a–b and arenethiolate 2c in tetraglyme gave the corresponding 1-naphythyl thio-ethers 3a–c . Thio-ethers 3a–c were oxidized to the corresponding sulfones 4a–c with m- chloroperoxybenzoic acid. The reaction of the dichloro-substituted anthracene 5a with 2b gave the disubstutution product 6a. The reaction of 9-bromoanthracene 5c with the alkanethiolate 2b gave 6b , whereas the reaction of 5c with the arenethiolate 2c gave a mixture of substitution product 6c and anthracene 7. The observation of the formation of both 6c and 7 is explained by the competition between substitution (SnAr) and electron-transfer (ET) mechanisms. Consistent with this interpretation, the reaction of the monochloro-substituted 5b , which has a higher-energy σ* orbital, with 2c gave 6c without the formation of 7. Zn/KOH in tetraglyme was shown to reduce the aryl halides 5b–c and thio-ether 6c to 7 .  相似文献   

11.
Thiation of 1 by LR gave the corresponding 3,5‐dithioxo derivative 2 and the trimer 3 . Methylation of 1 afforded the S‐methyl derivative 4 . Compound 1 was fused with 6‐bromo‐2‐phenyl‐benzo[1,3‐d]oxazin‐4‐one ( 5 ) and gave 6 . Condensation of 1 with some acid derivatives 7a , 7b , 7c , 7d and/or 8a , 8b , 8c yielded thiadiazolo‐triazine derivatives 9a , 9b , 9c , 9d and 10a , 10b , 10c . Compounds 9a , 9c and 10c were hydrolyzed to furnish 11a , 11b , 11c Acetylation of 14 afforded mono‐ and diacetyl‐derivatives 15 and 16 . Benzoylation of 14 afforded mono‐ and dibezoyl‐derivatives 17 and 18 . 14 with some aromatic aldehydes yielded 9a , 9b , 9c . Reacting 14 with phenyl (iso‐ and/or isothio‐) cyanate gave the urea derivatives 20a , 20b . Thiation of 14 with P4S10 furnished 21 . The newly synthesized compounds were tested as antimicrobial agents. J. Heterocyclic Chem., (2011)  相似文献   

12.
1-β-D-Ribofuranosyl- 21 , 1-(2-deoxy-β-D-erytftro-pento fur anosyl)- 27 and 1-β-D-arabinofuranosyl- 29 derivatives of 1,2,4-triazole-3-sulfonamide ( 19 ) have been prepared. Glycosylation of the silylated 19 with 1,2,3,5-tetra-0-acetyl-β-D-ribofuranose ( 5 ) in the presence of trimethylsilyl triflate gave the corresponding blocked nucleoside ( 20 ), which on ammonolysis afforded 1-β-D-ribofuranosyl-1,2,4-triazole-3-sulfonamide ( 21 ). Stereospecific glycosylation of the sodium salt of 19 with either 1-chloro-2-deoxy-3,5-di-O-p-toluoyl-α-D-erythro-pentofuranose ( 22 ) or 1-chloro-2,3,5-tri-0-benzyl-α-D-arabinofuranose ( 23 ) provided the corresponding protected nucleosides 26 and 28. Deprotection of 26 and 28 furnished 1-(2-deoxy-β-D-erythro-pentofuranosyl)-1,2,4-triazole-3-sulfonamide ( 27 ) and 1-β-D-arabinofuranosyl-1,2,4-triazole-3-sulfonamide ( 29 ), respectively. 2-0-D-Ribofuranosyl-1,2,4-triazole-3(4H)-thione ( 7 ) and 4-β-D-ribofuranosyl-1,2,4-triazole-3(2H)-thione ( 9 ) were also prepared utilizing either an acid catalyzed fusion of 1,2,4-triazole-3(1H,2H)-thione ( 4 ) with 5 , the reaction of 5 with silylated 4 in the presence of trimethylsilyl triflate, or by ring closure of 4-(2,3,5-tri-0-benzoyl-β-D-ribofuranosyl)thiosemicarbazide ( 10 ) with mixed anhydride and subsequent deacylation. The synthesis of 1-β-D-ribofuranosyl-3-benzylthio-1,2,4-triazole ( 15 ) has also been accomplished by the silylation procedure employing 3-benzylthio-1,2,4-triazole ( 13 ) and 5 to give 1-(2,3,5-tri-0-acetyl-β-D-ribofuranosyl)-3-benzylthio-1,2,4-triazole ( 14 ). Deacetylation of 14 furnished 15 . The structural assignments of 7, 14 and 21 were made by single-crystal X-ray diffraction analysis and their hydrogen bonding characteristics have been studied. The sulfonamido-1,2,4-triazole nucleosides are devoid of any significant antiviral or antitumor activity in cell culture.  相似文献   

13.
β-D-Arabinofurano[1′,2′:4,5]oxazolo-s-triazin-4-one-6-thione ( 7b ) and its t-butyldimethylsilyl protected counterpart 7a were synthesized by treating the appropriate 2-amino-β-D-arabinofurano[1′,2′:4,5]-2-oxazoline with ethoxycarbonyl isothiocyanate. These 2,2′-anhydro-s-triazine nucleosides were then subjected to alkylation under similar reaction conditions. Alkylation of 3′,5′-bis(O-t-butyldimethylsilyl)-β-D-arabinofurano[1′,2′:-4,5]oxazolo-s-triazin-4-one-6-thione ( 7a ) provided the targeted S-alkylated nucleosides, i.e., the C6-SCH3 ( 9a ), C6-SCH2-CH = CH2 ( 10a ), and C6-S-CH2-C = CH ( 11a ), in reasonable yields. Attempted deprotection of these nucleosides failed. In order to circumvent this problem, 7b was alkylated with the same reagents. In each case, instead of the expected S-alkylated anhydronucleosides, a mixture of the 5-N-alkylanhydro-s-triazine-4,6-dione and 5-N-alkylanhydro-s-triazin-4-one-6-thione derivatives were obtained. The 2,2′-anhydro linkage of 7a was also found to be more stable than the s-triazine ring to mild base. Basic conditions displaced the C6-sulfur substituent and eventually caused ring opening of the s-triazine aglycone.  相似文献   

14.
This paper describes the chemical investigation on BuOH-soluble EtOH extract from the aerial part of Sauropus androgynus. This study led to the characterization of six bioactive ingredients including three nucleosides—adenosine (1), 5′-deoxy-5′-methylsulphinyl-adenosine ( 2 ), and uridine ( 3 ), two flavonol dioside — 3-O-β-D-glucosyl-7-O-α-L-rhamnosyl-kaempferol ( 4 ), 3-O-β-D-glucosyl-(1→6)-β-D-glucosyl-kaempferol ( 5 ), and one rare flavonol trioside — 3-O-β-D-glucosyl-(1→6)-β-D-glucosyl-7-O-α-L-rhamno-syl-kaempferol ( 6 ). Their structures were determined on the basis of spectral analysis.  相似文献   

15.
Synthesis of alkenyl derivatives of certain purines and purine analogs is described. Direct alkylation of the sodium salt of 6-chloropurine (1) either with 1-bromo-2-pentene or 4-bromo-2-methyl-2-butene in N,N-dimethylformamide furnished N-7, 4a and N-9, 3a , 3b alkenyl derivatives. Similar alkylation of 2-amino-6-chloropurine (2) provided the corresponding N-7, 4c-4e and N-9, 3c-3e alkenyl derivatives. Acid hydrolysis of these chloro derivatives 3a-3e, 4a,c-e furnished the corresponding alkenyl hypoxan-thines 6a, 6b and 7a or alkenyl guanines 6c-6e and 7c-7e. Treatment of 3a-3d with thiourea in absolute ethanol provided the corresponding 6-thio derivatives 5a-5d. Alkylation of the sodium salt of either purine-6-carboxamide (8) or 1,2,4-triazole-3-carboxamide (10) gave mainly one isomer 9a, 9b and 11a, 11b. The direct alkylation of pyrrolo[2,3-d]pyrimidin-4(3H)-one (12) gave N-3 alkenyl derivatives 13a, 13b , and the N-7 alkenyl derivatives 16a, 16b have been prepared starting from the 4-chloro derivative 14 . Synthesis of 2-amino-7-(2-penten-1-yl)pyrrolo[2,3-d]pyrimidin-4(3H)-one (19a) has been accomplished starting from 2-amino-4-methoxypyrrolo[2,3-d]pyrimidine (17) . These alkenyl derivatives were found to be devoid of anti-HCMV activity in vitro.  相似文献   

16.
The glycosylation of indazolyl anions derived from 4a , b with 2-deoxy-3,5-bis-O-(4-methylbenzoyl)-α-D -erythro-pentofuranosyl chloride ( 5 ) is described. The reaction was Stereoselective – exclusive β-D -anomer formation – but regioisomeric N1- and N2-(2′-deoxy-β-D -ribofuranosides) (i.e. 6a and 7a , resp., and 6b and 7b , resp.) were formed in about equal amounts. They were deprotected to yield 8a , b and 9a , b . Compound 1 , related to 2′-deoxyadenosine ( 3 ), and its regioisomer 2 were obtained from 8b and 9b , respectively, by catalytic hydrogenation. The anomeric configuration as well as the position of glycosylation were determined by 1D NOE-difference spectroscopy. The first protonation site of 1 and 2 was found to be the NH2 group. The N-glycosylic bond of 1H-indazole N1-(2′-deoxyribofuranosides) is more stable than that of the parent purine nucleosides. Compound 1 is no substrate for adenosine deaminase.  相似文献   

17.
The nucleobase anion glycosylation of 3-bromo-4-isopropoxy-1H-pyrazolo[3,4-d]pyrimidin-6-amine (6) with 3,5-di-O-benzoyl-2-deoxy-2-fluoro-alpha-d-arabinofuranosyl bromide (5) furnished the protected N(1)-beta-d-nucleosides 7 (60%) and 8 (ca. 2%) along with the N(2)-beta-d-regioisomer 9 (9%). Debenzoylation of compounds 7 and 9 yielded the nucleosides 10 (81%) and 11 (76%). Compound 10 was transformed to the 2'-deoxyguanosine derivative 1 [6-amino-3-bromo-1-(2-deoxy-2-fluoro-beta-d-arabinofuranosyl)-1H-pyrazolo[3,4-d]pyrimidin-4-one] (85% yield) and the purine-2,6-diamine analogue 2 [3-bromo-1-(2-deoxy-2-fluoro-beta-d-arabinofuranosyl)-1H-pyrazolo[3,4-d]pyrimidin-4, 6-diamine] (78%). Both nucleosides form more than 98% N-conformer population (P(N) ca. 358 degrees and psi(m) ca. 37 degrees ) in aqueous solution. Single-crystal X-ray analysis of 1 showed that the sugar moiety displays also the N-conformation [P = 347.3 degrees and psi(m) = 34.4 degrees ] in the solid state. The remarkable rigid N-conformation of the pyrazolo[3,4-d]pyrimidine 2'-deoxy-2'-fluoro-beta-d-arabinonucleosides 1 and 2 observed in solution is different from that of the parent purine 2'-deoxy-2'-fluoro-beta-d-arabinonucleosides 3 and 4, which are in equilibrium showing almost equal distribution of the N/S-conformers.  相似文献   

18.
The synthesis of the 7-deaza-2′-deoxy-adenine derivatives 7b–3 with chloro, bromo, or methyl substituents at C(5) is described. Glycosylation of the 5-substituted 4-chloropyrrolo[2,3-d]pyrimidines 4b–d with 2-deoxy-3,5-di-O-(4-toluoyl)-α-D -erythro-pentofuranosyl chloride ( 3 ) gave the β-D -nucleosides 5b–d , exclusively. They were deblocked (→ 6b–d ) and converted into the tubercidin derivatives 7b–d .  相似文献   

19.
Several 3-alkoxysubstituted pyrazolo[3,4-d]pyrimidine ribonucleosides structurally related to adenosine, inosine and guanosine have been prepared by the direct glycosylation of preformed aglycon precursor containing a 3-alkoxy substituent. Ring closure of 5(3)-amino-3(5)-ethoxypyrazole-4-carboxamide ( 6b ) with either formamide or potassium ethyl xanthate gave 3-ethoxyallopurinol ( 7b ) and 3-ethoxy-6-thioxopyrazolo[3,4-d]-pyrimidin-4(5H,7H)-one ( 10 ), respectively. Methylation of 10 gave the corresponding 6-methylthio derivative 15 . Similar ring annulation of 5(3)-methoxypyrazole-4-carboxamide ( 6a ) with formamide afforded 3-methoxyallopurinol ( 7a ). Treatment of 5(3)-amino-3(5)-methoxypyrazole-4-carbonitrile ( 5a ) with formamidine acetate furnished 4-amino-3-methoxypyrazolo[3,4-d]pyrimidine ( 4 ). High-temperature glycosylation of 7b with 1-O-acetyl-2,3,5-tri-O-benzoyl-D-ribofuranose in the presence of boron trifluoride etherate gave a 2:1 mixture of N-1 and N-2 glycosyl blocked nucleosides 11b and 13b . Deprotection of 11b and 13b with sodium methoxide gave 3-ethoxy-1-β-D-ribofuranosylpyrazolo[3,4-d]pyrimidin-4(5H)-one ( 12b ) and the corresponding N-2 glycosyl isomer 14b , respectively. Similar glycosylation of either 4 or 7a , and subsequent debenzoylation gave exclusively 4-amino-3-methoxy-1-β-D-ribofuranosylpyrazolo[3,4-d]pyrimidine ( 9 ) and 3-methoxy-1-β-D-ribofuranosylpyrazolo[3,4-d]pyrimidin-4-(5H)-one ( 12a ), respectively. The structural assignment of 12a was made on the basis of single-crystal X-ray analysis. Application of this general glycosylation procedure to 15 gave the corresponding N-1 glycosyl derivative 16 as the sole product, which on debenzoylation afforded 3-ethoxy-6-(methylthio)-1-(3-D-ribofuranosylpyrazolo[3,4-d]pyrimidin-4(5H)-one ( 17 ). Oxidation of 16 and subsequent ammonolysis furnished the guanosine analog 6-arnino-3-ethoxy-1-β-D-ribofuranosylpyrazolo[3,4-d]-pyrimidin-4(5H)-one ( 19 ). Similarly, starting from 3-methoxy-4,6-bis(methylthio)pyrazolo[3,4-d]pyrimidine ( 20 ), 6-amino-3-methoxy-1-β-D-ribofuranosylpyrazolo[3,4-d]pyrimidin-4(5H)-one ( 23 ) was prepared.  相似文献   

20.
Condensation of diethyl formylamino- or diethyl acetylaminomalonate with 4-, 5- or 6-nitrogramine 1 afforded the diethyl formylamino- or the diethyl acetylamino[(nitroindol)-3-ylmethyl]malonates 2 ; reduction of the nitro group followed by N-formylation or acetylation of the resulting amino compounds 3 , led to the 4-, 5-and 6-acylamino derivatives 4 . Cyclization of 4 in the presence of polyphosphoric esters gave the 3,3-bis(ethoxycarbonyl)-3,4-dihydro-β-carbolines 5 , which underwent lithium chloride/water catalyzed monodeethoxycarbonylation to the corresponding 5-, 6- and 7-acylamino-3-ethoxycarbonyl-β-carbolines 6 , whose acidic hydrolysis led finally to the 5-, 6- and 7-amino-3-ethoxycarbonyl-β-carbolines 9 . The 6-amino compounds 9b-e were obtained also by direct nitration of 3-methoxycarbonyl-β-carboline 7a and of 3-ethoxycarbonyl-β-carboline 7c , followed by the nitro group reduction of the resulting nitro carbolines 8 . Preliminary studies of the binding to rabbit brain benzodiazepine receptor sites indicate compounds 9b and 9c to inhibit the 3H-diazepam binding at 10?8 M concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号