首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Differences between the emulsion copolymerization and miniemulsion copolymerization processes, in terms of emulsifier adsorption, emulsion stability, polymerization kinetics, copolymer composition and dynamic mechanical properties were studied for the comonomer mixture of 50:50 molar ratio vinyl acetate (VA+)—butyl acrylate (BuA), using sodium hexadecyl sulfate (SHS) as a surfactant and hexadecane (HD) as a co-surfactant. The use of hexadecane with the appropriate SHS initial concentration led to a higher adsorption of surfactant, smaller droplet size, higher stability of the emulsions, lower polymerization rates, and larger latex particle size. The copolymer composition during the initial 70% conversion was found to be less rich in Vac monomer units for the miniemulsion process. The dynamic mechanical properties of the copolymer films showed less mixing between the BuA-rich core and the VAc-rich shell in the miniemulsion latexes compared to the conventional latex films.  相似文献   

2.
Miniemulsion copolymerization of 50 : 50 weight fraction of styrene–methyl methacrylate monomer, using hexadecane as the cosurfactant, was carried out in both unseeded and seeded polymerizations. Effects of the hexadecane concentration and the ultrasonification time on the conversion–time curves and particle size of the final latex were investigated for unseeded polymerization. The kinetic and particle size distribution results showed that an increase in hexadecane concentration and ultrasonification time cause faster polymerization rate and smaller particle size. The mechanism of mass transport from miniemulsion droplets to polymer particles was also investigated for seeded polymerization. For this purpose a monomer miniemulsion was mixed with a fraction of a previously prepared miniemulsion latex particles prior to initiation of polymerization, using residual oil-soluble initiator in the seed latex. The concentration of hexadecane and a water-insoluble inhibitor (2,5 di-tert-butyl hydroquinone) in the miniemulsions were the main variables. Seeded polymerizations were also carried out in the presence of miniemulsion droplets containing a water-insoluble inhibitor and water-soluble initiator. The inhibitor concentration and the agitation speed during the course of polymerization were the experimental variables. The kinetic and particle size results from these seeded experiments suggested that collision between miniemulsion droplets and polymer particles may play a major role in the transport of highly water-insoluble compounds.  相似文献   

3.
Solution of polystyrene in styrene were dispersed in an aqueous gel phase comprising sodium lauryl sulfate, cetyl alcohol, and water using an emulsification process known to produce monomer droplet sizes inthe submicron size range (referred to as miniemulsion droplets). The shelf-life stabilities of these miniemulsions were studied to determine their relative droplet sizes, and the emulsions were concommitantly polymerized in an isothermal batch reaction calorimeter. The polymerization kinetics and final particle sizes produced were compared with miniemulsion and conventional emulsion polymerizations prepared using equivalent recipes without the addition of polystyrene. The results indicate that polymerization of miniemulsions prepared from polymer solutions produce significantly different kinetics than both miniemulsion and conventional emulsion polymerizations. In general, a small amount of polymer greatly increases the rate of polymerization and the final number of particles produced in the polymerization to the extent where even conventional polymerizations carried out above the critical micelle concentration of the surfactant polymerize more slowly. The results are explained by considering the system to be comprised of small, stable pre-formed monomer-swollen polymer particles which are able to efficiently capture aqueous phase radicals. This enables the system to produce a large final number of particles, similar to the initial number of pre-formed polymer particles, as opposed to miniemulsions and micelles in which only a relatively small fraction of the initial number of species (droplets or micelles) become polymer particles. © 1994 John Wiley & Sons, Inc.  相似文献   

4.
详细讨论了 [(NH4 ) 2 S2 O8/NaHSO3 ]氧化 还原引发体系引发苯乙烯 (St)丙烯酸丁酯 (BuA)体系的细乳液共聚合的动力学特征及其与成核机理的关系 .细乳液的聚合速率比相同条件下的常规乳液聚合速率低 ,引发期长 .随聚合温度、引发剂浓度、乳化剂浓度的增加 ,聚合速率增大 .共乳化剂正十六烷 (HDE)的浓度在一定范围内增大 ,反应的速率增大 ,然后再增加HDE ,反应速率下降 .建立动力学曲线数学模型 ,并深入讨论了细乳液的聚合动力学特征 ,与常规乳液所得结果相比较 ,探讨了细乳液的单体液滴成核机理 .  相似文献   

5.
用氧化还原引发剂(NH4)2S2O8/NaHSO3研究了苯乙烯(St)/丙烯酸丁酯(BA)低温下的细乳液共聚合,细乳液单体液滴在亚微米级(100~400nm).测定了聚合过程中粒子大小及分布的变化,发现细乳液聚合随引发剂、乳化剂和共乳化剂浓度的增加,乳胶粒子尺寸变小,分布变宽,并且比相同条件下传统乳液聚合的粒子大.计算了聚合过程中粒子数变化规律及乳化剂覆盖率,讨论了细乳液与传统乳液中引发剂、乳化剂对反应过程的影响及成核机理的差异.  相似文献   

6.
A mathematical model is presented to describe the monomer transport between monomer droplets, aqueous phase, and polymer particles during the course of an emulsion polymerization. The model was used to investigate the role of the cosurfactant (hexadecane) in the miniemulsion copolymerization of 50:50 molar ratio vinyl acetate-butyl acrylate monomer mixture, as well as the effect of the different components and process variables on the rate of copolymerization, monomer distribution between phases, and composition of the copolymer.  相似文献   

7.
A mathematical model of seeded miniemulsion copolymerization of styrene-methyl methacrylate for oil-soluble initiator is presented. The mathematical model includes the mass transfer, from the miniemulsion droplets to the polymer particles, by both molecular diffusion and collision between miniemulsion droplets and the polymer particles. The mathematical model also includes the calculation of both the distribution of partices with i radicals and the average number of radicals per particle in the miniemulsion copolymerization using oil-soluble initator. Studies were carried out on the mass transfer coefficients of monomers across the interface between the miniemulsion droplet and the aqueous phase, hexadecane concentration in the miniemulsion droplets, the miniemulsion droplet sizes, and the collision between miniemulsion droplets. The results indicated that the copolymerization of styrene-methyl methacrylate was not a mass transfer controlled process. The mass transfer by collision between miniemulsion droplets and polymer particles plays an important role and was included in the model in order to predict the experimental data of seeded miniemulsion copolymerization.  相似文献   

8.
The kinetics of free-radical copolymerization and terpolymerization of acrylamide (AAm), N, N′-methylenebis(acrylamide) (MBA) and methacrylic acid (MA) in the inverse water/monomer/cyclohexane/Tween 85 miniemulsion was investigated. Polymerizable sterically-stable miniemulsions were formulated in cyclohexane as a continuous medium. Polymerizations are very fast and reach the final conversion within several minutes. The dependence of the polymerization rate vs. conversion is described by a curve with two nonstationary rate intervals. The maximum rate of polymerization slightly increases with increasing concentration of crosslinking monomer (MBA) and strongly decreases by the addition of MA. The rate of polymerization is inversely proportional to the 0.9 th and 1.8 th power of the particle concentration without and with MA, respectively. The number of polymer particles is inversely proportional to the 0.18 th and 0.13 th power of MBA concentration. The kinetic and colloidal parameters of the miniemulsion polymerization are discussed in terms of microemulsion polymerization model.  相似文献   

9.
The role of the cosurfactant (hexadecane) in the miniemulsion copolymerization of 50 : 50 molar ratio vinyl acetate–butyl acrylate monomer mixture is analyzed from an experimental point of view. The main factor responsible for the different kinetic behavior between the miniemulsion and conventional emulsion copolymerization processes was found to be the different particle nucleation mechanism operating in each process. Experimental evidence is presented indicating that in the miniemulsion copolymerization particle nucleation takes place in the preformed stable submicron monomer droplets.  相似文献   

10.
Polychloromethylstyrene nanoparticles of sizes from 12.0 ± 2.3 to 229.6 ± 65 nm were prepared by the emulsion and miniemulsion polymerization of chloromethylstyrene in an aqueous continuous phase in the presence of potassium persulfate as initiator, sodium octylbenzenesulfonate as surfactant, and hexadecane as costabilizer for the miniemulsion polymerization process only. The influence of various polymerization parameters (e.g., concentration of the monomer, initiator, the crosslinker monomer, and the surfactant) on the properties of the particles (e.g., size, size distribution, and yield) has been elucidated. The polychloromethylstyrene nanoparticles formed via the emulsion polymerization mechanism possess smaller diameter and size distribution than those formed under similar conditions via the miniemulsion polymerization mechanism. Other differences between these two polymerization mechanisms have also been elucidated. For future study, we wish to use these nanoparticles for the covalent immobilization of bioactive reagents such as proteins to the surface of these nanoparticles for various biomedical applications.  相似文献   

11.
In the radiation-induced emulsion copolymerization of tetrafluoroethylene with propylene, the dose rate dependence, the effect of emulsifier concentration, and the effect of monomer composition were studied. The rate of polymerization was proportional to the 0.90 power of the dose rate and the 0.26 power of the emulsifier concentration. The degree of polymerization was independent of the dose rate and the emulsifier concentration. Both the rate of polymerization and the degree of polymerization increased with tetrafluoroethylene content in the monomer mixture. The resulting copolymer was an alternating polymer over a wide range of monomer composition. It was concluded from the dose rate dependence of the rate of polymerization that the emulsion copolymerization is mainly terminated by degradative chain transfer of the propagating radical to propylene.  相似文献   

12.
Miniemulsion polymerization is a promising approach to produce and tailor pressure sensitive adhesives (PSAs). In this paper, a systematic comparison of the adhesive properties of latexes produced by miniemulsion and conventional emulsion polymerization is presented. Specifically, the influence of the total surfactant concentration, chain transfer agent concentration and chemical composition on the final adhesive properties of the polymer 2-ethyl hexyl acrylate/methyl methacrylate/acrylic acid was discerned using a 23 factorial design for each polymerization method. In addition to the adhesive properties (i.e., loop tack, peel strength and shear strength), molecular weight distribution, particle size distribution (PSD) and glass transition temperature were analyzed. The results show that under the conditions used in this work, it is possible to produce PSAs using miniemulsion polymerization, a process wherein monomer droplet nucleation is the dominant particle nucleation mechanism. The use of a miniemulsion polymerization process, as opposed to the conventional emulsion technique, produced several differences such as larger particles sizes and narrower molecular weight distributions. Focusing on the PSA films that exhibited adhesive rather than cohesive failure, the PSA films generated via miniemulsion polymerization displayed higher values of loop tack and peel strength compared to those produced via conventional emulsion polymerization. Shear strength results were strongly dependent on the amount of gel content and sol molecular weight for both cases.  相似文献   

13.
An emulsion polymerization system with uniform continuous addition of vinyl acetate monomer, Pluronic F68 surfactant, and persulfate initiator has been examined with variation of the surfactant concentration over a tenfold range. The particle surface area per unit weight of emulsion was found to vary directly as the surfactant/monomer ratio, as also did the emulsion viscosity. At constant polymer/emulsion weight the number of particles per unit emulsion weight varied directly as the cube of the surfactant concentration. It is shown that these relationships apply also to other monomers, such as styrene and methacrylate esters. The solubility of vinyl acetate in a range of Pluronic F68 aqueous solutions was determined, and it was shown that the rate of polymerization is dependent on the solubility of the monomer in the surfactant solution. It is concluded that when a water-soluble initiator is used, polymerization proceeds in the aqueous phase. The principal factors controlling the rate of polymerization in the emulsion polymerization of vinyl acetate are, consequently, the initiating system and the concentration of monomer in the aqueous phase. Solubilization characteristics indicate that the surfactant concentration will have a much greater effect on the less water-soluble monomers, such as styrene, than on the more soluble ones, such as vinyl acetate.  相似文献   

14.
合成了碱溶性无规共聚物聚 (甲基丙烯酸甲酯 丙烯酸乙酯 甲基丙烯酸 ) (MMA EA MAA) ,并对其结构、表面活性进行了表征研究 .以合成的P(MMA EA MAA)作高分子表面活性剂 ,进行甲基丙烯酸丁酯的乳液聚合 .研究了反应温度 ,引发剂浓度 ,表面活性剂浓度等因素对反应速率 (Rp)的影响 .结果表明 ,聚合速率随引发剂浓度 ,表面活性剂浓度的增加而增加 ;该体系的表观活化能为 85 19kJ·mol- 1 .用透射电镜 (TEM)表征了所制备的乳胶粒子形态 ,乳胶粒子呈较明显的核 壳结构 .  相似文献   

15.
研究了甲基丙烯酸3-三甲氧基硅丙酯(MPS)和苯乙烯(St)细乳液聚合过程中的水解及缩合反应.用气相色谱仪测定聚合过程中水解产物——甲醇的含量来研究MPS的水解度.MPS分子主要在细乳液液滴与水的界面以及乳胶粒与水的界面上发生水解反应.MPS和St比例、介质pH值、乳化剂用量、引发剂类型和用量都会影响MPS的水解程度.缩合产物用29Si固态核磁共振表征,中性条件下,缩合反应受到抑制,在高MPS/St比例的体系中也只生成少量缩合产物.酸性和碱性条件下,缩合产物量均增加,但碱性条件下,体系中仍有一定数量未缩合的硅氧烷存在,这与细乳液聚合独特的液滴成核机理及聚合过程中较少液滴间物质交换有关.  相似文献   

16.
 Stable styrene miniemulsions were prepared by using alkyl methacrylates as the reactive cosurfactant. Like conventional cosurfactants (e.g., cetyl alcohol (CA) and hexadecane (HD)), alkyl methacrylates (e.g., dodecyl methacrylate (DMA) and stearyl methacrylate (SMA)) may act as a cosurfactant in stabilizing the homogenized miniemulsions. Furthermore, the methacrylate group may be chemically incorporated into latex particles in subsequent miniemulsion polymerization. The data of the monomer droplet size, creaming rate and phase separation of monomer as a function of time were used to evaluate the shelf-life of miniemulsions stabilized by sodium dodecyl sulfate in combination with various cosurfactants. Polystyrene latex particles were produced via both monomer droplet nucleation and homogeneous nucleation in the miniemulsion polymerization using CA or DMA as the cosurfactant, with the result of a quite broad particle size distribution. On the other hand, the miniemulsion polymerization with HD or SMA showed a predominant monomer droplet nucleation. The resultant particle size distribution was relatively narrow. In miniemulsion polymerization, the less hydrophobic DMA is similar to CA, whereas the more hydrophobic SMA is similar to HD. Received: 19 November 1996 Accepted: 20 February 1997  相似文献   

17.
In this study, the microemulsion and emulsion polymerization of styrene at 70 degrees C in the presence of sodium dodecyl sulfate (SDS, surfactant) and potassium persulfate (KPS, initiator) was conducted under microwave radiation. Laser light scattering was used to characterize the resultant polystyrene latex particles formed at different polymerization stages. The influence of the initial emulsion composition, that is, the SDS, KPS, and styrene concentrations, on the final particle size led us to a simple modified structural model in which we considered the stabilization effects of both the surfactant and the ionic end groups generated from the initiator. This model extended the application of the previous Wu plot from microemulsion polymerization to emulsion polymerization. Using this model, we were not only able to control the particle size but were also able to predict the monomer concentration dependence of the number of the resultant latex particles and the effect of diluting the reaction mixture on the resultant particle size.  相似文献   

18.
Latexes with very small particle size are usually manufactured by microemulsion polymerization. This article explains the preparation of nanolatexes by monomer-starved nucleation in a conventional semibatch emulsion polymerization with a low surfactant/monomer ratio and with no need for a cosurfactant. The semibatch emulsion polymerization reactions started with an aqueous solution of a surfactant and a water soluble initiator. Monomer was added at a fixed rate. The size of particles decreased with decreasing rate of monomer addition. High solids content nanolatexes with particles as small as 25 nm in diameter were produced. Several monomers with different water solubilities were compared. The order of the number of particles in terms of the rate of monomer addition was found to depend on the type of monomer. Water soluble monomers produced more particles due to associated chain transfer to monomer and radical exit. The monodispersity of particles at the end of nucleation increased as the rate of monomer addition decreased. The technique seems to be preferable to microemulsion polymerization, which uses a high concentration of surfactant/cosurfactant and is limited to low monomer holdup.  相似文献   

19.
The effects of operating variables on the kinetic behavior of the emulsion copolymerization of vinylidene chloride (VDC) and methyl methacrylate (MMA) were examined at 50 °C with sodium lauryl sulfate as an emulsifier and potassium persulfate as an initiator, respectively. The number of polymer particles produced increased in proportion to the 1.0 power of the initial emulsifier concentration and to the 0.3 power of the initial initiator concentration and decreased with an increasing content of MMA in the initial monomer charge. The rate of copolymerization was proportional to the 0.4 power of the initial emulsifier concentration and to the 0.5 power of the initial initiator concentration and increased with an increasing content of MMA in the initial monomer charge. The molecular weight of copolymer produced decreased drastically with an increasing content of VDC in the initial monomer charge. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1275–1284, 2002  相似文献   

20.
The emulsion Copolymerization of styrene and carboxylic acid monomers such as acrylic, methacrylic, and itaconic acids (AAc, MAAc, IAc) was studied by using 60Co γ-rays as initiator and sodium do-decylsulfate as emulsifier. The polymerization behavior of these acid monomers was followed by simultaneous conductometric and potentiometric titrations for a latex sample taken in polymerization. The polymerization rate of these acid monomers increases in the following order of hydrophobicity: IAc < AAc < MAAc; this suggests that their polymerization sites are mainly the surface and/or subsurface regions of latex particles. The copolymerization rate of styrene and acid monomer increases with an increase in the acid monomer content for AAc and MAAc, whereas for IAc the rate decreases. The particle sizes determined by the stopped-flow method reveal that this variation of copolymerization rate cannot be explained by the number of growing particles and should be attributed to another factor; for instance, the transfer rate of styrene molecules from oil droplets to growing particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号