首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
N-isopropylacrylamide (NIPAAm) and N-acryloxysuccinimide (NAS) were grafted from their binary mixtures in tetrahydrofurane (THF) and toluene solutions onto polypropylene (PP) films by the pre-irradiation oxidative method in air. Effects of pre-irradiation dose, dose rate, and monomer concentrations (NAS/NIPAAm) were studied. The grafted copolymers exhibited the lower critical solution temperature (LCST) at around 31 °C. Based on its thermo-reversible behavior, this system has been used for immunoassay, drug delivery, separation processes and immobilization of enzymes. N-acryloxysuccinimide (NAS) has been used as an active ester to bind proteins through amide bond formation with lysine, and because of this property, the grafted copolymer has been crosslinked with polylysine. Techniques used to characterize the films included differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), infrared (FTIR-ATR) and elemental analysis. Results on thermo-sensitivity are presented. This new system could find applications in vesicle immobilizations.  相似文献   

2.
Summary: The one step synthesis of a series of branched azobenzene side‐chain liquid‐crystalline copolymers by the self‐condensing vinyl copolymerization (SCVCP) of a methyl acrylic AB* inimer, 2‐(2‐bromoisobutyryloxy)ethyl methacrylate (BIEM), with the monomer 6‐(4‐methoxy‐azobenzene‐4′‐oxy)hexyl methacrylate (M), by atom transfer radical polymerization (ATRP) in the presence of CuBr/N,N,N′,N′,N″‐pentamethyldiethylenetriamine as a catalyst system, and in chlorobenzene solvent, is reported. The degree of branching (DB), and the molecular weights and polydispersities of the resultant polymers were determined by NMR spectroscopy and size exclusion chromatography, respectively. The phase behaviors of the branched copolymers were characterized by differential scanning calorimetry (DSC) and thermal polarized optical microscopy (POM). The degree of branching of the branched copolymers could be controlled by the comonomer ratio in the feed and influenced their liquid‐crystal properties. Liquid‐crystal properties were not exhibited when the comonomer ratio was low. Comonomer ratios greater than 8 gave polymers with a lower number of branches, which exhibited both a smectic and a nematic phase.

A polarized optical micrograph of the smectic phase texture of a polymer synthesized here with a higher comonomer feed ratio (magnification × 400).  相似文献   


3.
A number of metallocene/methylaluminoxane (MAO) catalysts have been compared for ethylene/propylene copolymerizations to find relationship between the polymerization activities, copolymer structures, and copolymerization reactivity ratio with the catalyst structures. Stereorigid racemic ethylene bis (indenyl) zirconium dichloride and the tetrahydro derivative exhibit very high activity of 10 7 g (mol Zr h bar)?1, giving copolymers having comonomer compositions about the same as the feed compositions, molecular weights increasing with the increase of ethylene in the feed, random incorporation of comonomers, and narrow molecular weight distribution indicative of a single catalytic species. Nonbridged bis (indenyl) zirconium behaved differently, favoring the incorporation of ethylene over propylene, producing copolymers whose molecular weight decreases with the increase of ethylene in the feed, broad molecular weight distribution, and a methanol soluble fraction. This catalyst system contains two or more active species. Simple methallocene catalysts have much lower polymerization activities. CpTiCl2/MAO produced copolymers with tendency toward alternation, whereas Cp2HfCl2/MAO gave copolymer containing short blocks of monomers.  相似文献   

4.
Copolymers of 2‐methylene‐1,3‐dioxepane (MDO) and methyl acrylate (MA) containing ester units both in the backbone and as pendant groups were synthesized by free‐radical copolymerization. The influence of reaction conditions such as the polymerization time, temperature, initiator concentration, and comonomer feed ratio on the yield, molecular weight, and copolymer composition was investigated. The structure of the copolymers was confirmed by 1H NMR, 13C NMR, and IR spectroscopy. Differential scanning calorimetry indicated that the copolymers had a random structure. An NMR study showed that hydrogen transfer occurred during the copolymerization. The reactivity ratios of the comonomers were rMDO = 0.0235 and rMA = 26.535. The enzymatic degradation of the copolymers obtained was carried out in the presence of proteinase K or a crude enzyme extracted from earthworms. The experimental results showed that the higher ester molar percentage in the backbone caused a faster degradation rate. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2898–2904, 2003  相似文献   

5.
A new family of biodegradable copolymers of unsaturated poly(ester amide)s (UPEAs) and saturated poly(ester amide)s (SPEAs) based on L ‐phenylalanine, aliphatic dicarboxylic acids, and aliphatic dialcohols was synthesized by solution polycondensation and characterized. These unsaturated/saturated poly(ester amide) copolymers (USPEAs) were obtained in fairly good yields with N,N‐dimethylacetamide as the solvent. The molecular weights (Mn and Mw) of the USPEAs measured by GPC ranged from 15 to 60 kg/mol with a molecular weight distribution of 1.07–1.63. The chemical structures of the USPEAs were confirmed by both IR and NMR spectra. The USPEA copolymers had glass transition temperatures lower than that of pure UPEA but higher than that of pure SPEA. An increase in the unsaturated component in the USPEA copolymers led to an increase in their glass transition temperatures. The solubility of the copolymers was good in N,N‐dimethylacetamide and dimethyl sulfoxide but poor in water, acetone, methanol, and ethyl acetate. The preliminary in vitro biodegradation properties of the USPEA copolymers were investigated in both pure phosphate buffered saline (PBS) buffer and α‐chymotrypsin solutions. The copolymers showed significantly faster weight loss in an enzyme solution than in a pure PBS buffer. Upon the adjustment of the unsaturated‐to‐saturated diester monomer feed ratio, the obtained USPEA copolymers could have controlled chemical and physical properties, such as glass transition temperatures, solubility, and biodegradability, which could easily extend their applications to biomedical and pharmaceutical areas. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1595–1606, 2007  相似文献   

6.
The comonomer required, p-maleimidobenzoic acid (MBA) was first prepared in good yield by refinements of published methods. p-Carboxysuccinanilic acid (CSA), and p-succinimidobenzoic acid (SBA), were also prepared to provide models useful for IR and NMR for spectroscopic assignments of the new copolymers. Polymerization of MBA with acrylamide in glacial acetic acid at 60°C gave copolymers with estimated viscosity average molecular weights of 60,000 to 90,000. Yields and viscosity average molecular weights decreased as the MBA to acrylamide monomer feed ratio was increased. The rate of incorporation of MBA into the copolymer rose from 7 to 23% when the mole ratio in the feed was raised from 5 to 20%. Decreasing the initiator concentration increased molecular weights by less than predicted and reduced the yield of copolymer for any given feed ratio of MBA to acrylamide. In all cases about 30–40% of the MBA units in the purified copolymers were hydrolyzed. A change to dimethyl sulfoxide solvent gave good, and poor yields of copolymer at 5 and 10 mol % MBA, respectively, and no copolymer at 20 mol % MBA. Viscosity average molecular weights of the copolymer products prepared in DMSO were somewhat lower than obtained for the copolymers prepared in acetic acid. Polymerization in a DMSO-water mixture gave a negligible yield of polymeric product. Instead, only hydrolysates of MBA precipitated when the coloured polymerization solutions were added to methanol.  相似文献   

7.
A simple way of controlling molecular weights in the free‐radical copolymerization of styrene and α‐methylstyrene (AMS) is presented and investigated by simulation via the program package PREDICI®. It is shown that the molecular weight of the product copolymers may be varied in a wide range (from M̄Cw = 500 to 2·106) by variation of the comonomer feed ratio and the reaction temperature. The reasons for this simple molecular weight control are associated with the AMS comonomer and are threefold: (i) AMS has a low propagation rate coefficient, due to the increased steric requirements of the monomer, (ii) AMS has a high transfer to monomer constant (CM) in comparison with styrene and (iii) AMS has a low ceiling temperature, so that the effective propagation rate coefficient decreases with increasing temperature. In addition to the styrene/AMS system, other comonomer systems showing similar kinetic and thermodynamic features (e. g. the styrene/methyl ethacrylate (MEA) system) may also be used to generate a wide range of molecular weights. The possibilities for controlling molecular weight and end group functionalities by replacing the slowly propagating monomer by a functional monomer are discussed.  相似文献   

8.
The anionic polymerization of 2‐vinylnaphthalene (2VN) has been studied in tetrahydrofuran (THF) at ?78 °C and in toluene at 40 °C. 2VN polymerization in THF, toluene, or toluene/THF (99:1 v/v) initiated by sec‐butyllithium (sBuLi) indicates living characteristics, affording polymers with predefined molecular weights and narrow molecular weight distributions. Block copolymers of 2VN with methyl methacrylate (MMA) and tert‐butyl acrylate (tBA) have been synthesized successfully by sequential monomer addition in THF at ?78 °C initiated by an adduct of sBuLi–LiCl. The crossover propagation from poly(2‐vinylnaphthyllithium) (P2VN) macroanions to MMA and tBA appears to be living, the molecular weight and composition can be predicted, and the molecular weight distribution of the resulting block copolymer is narrow (weight‐average molecular/number‐average molecular weight < 1.3). Block copolymers with different chain lengths for the P2VN segment can easily be prepared by variations in the monomer ratios. The block copolymerization of 2VN with hexamethylcyclotrisiloxane also results in a block copolymer of P2VN and poly(dimethylsiloxane) (PDMS) contaminated with a significant amount of homo‐PDMS. Poly(2VN‐b‐nBA) (where nBA is n‐butyl acrylate) has also been prepared by the transesterification reaction of the poly(2VN‐b‐tBA) block copolymer. Size exclusion chromatography, Fourier transform infrared, and 1H NMR measurements indicate that the resulting polymers have the required architecture. The corresponding amphiphilic block copolymer of poly(2VN‐b‐AA) (where AA is acrylic acid) has been synthesized by acidic hydrolysis of the ester group of tert‐butyl from the poly(2VN‐b‐tBA) copolymer. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4387–4397, 2002  相似文献   

9.
Surface modification of enzymes for a potential use in therapy was obtained with a new type of tailor-made copolymers ofNacryloylmorpholine andN-acryloxysuccinimide. The first monomer was designed to confer solubility on the polymer, whereas the second was used to give it reactivity toward protein amino groups. The reactivity of polymers of different composition towards amino acid derivatives and model proteins, such as catalase and ribonuclease-A, is described. Water soluble and catalytically active enzyme derivatives were obained using copolymers prepared with a mixture of N-acryloxysuccinimide andn-acryloylmorpholine in a 1:99 molar ratio. At increasing molar ratio (3:97, 10:90) extensive crosslinking between polymer and enzymes takes place, yielding insoluble adducts.  相似文献   

10.
Block and graft copolymers with poly(N-isopropylacrylamide) and poly[(N-acetylimino)ethylene] (PNAI) sequences were synthesized via PNAI derivatives (macroinitiators or macromers). The polymerization yields for block copolymers synthesized in ethanol, using the PNAI macroinitiator, were low (<10%), except where photochemical polymerization was applied. By contrast, for the copolymerizations of N-isopropylacrylamide with the PNAI macromers, performed in alcoholic solution, quite high polymerization yields, around 80-90%, were reached. 1H-NMR and IR spectral and differential scanning calorimeter thermal data confirmed the copolymer formation. Thermosensitivity of the copolymers was investigated by means of turbidimetric technique as a function of their nature, average molecular weight and composition. It was found that the length of the chain of the PNAI macromer and the content in hydrophilic PNAI units of the resulted copolymer affected this behavior.  相似文献   

11.
The star-shaped organic/inorganic hybrid poly(l-lactide) (PLLA) based on polyhedral oligomeric silsesquioxane (POSS) was prepared using octa(3-hydroxypropyl) polyhedral oligomeric silsesquioxane as initiator via ring-opening polymerization (ROP) of l-lactide (LLA). The molecular weight of POSS-containing star-shaped hybrid PLLA (POSSPLLA) can be well controlled by the feed ratio of LLA to initiator. The POSSPLLA was further functionalized into the macromolecular reversible addition-fragmentation transfer (RAFT) agent for the polymerization of N-isopropylacrylamide (NIPAM), leading to the POSS-containing star-shaped organic/inorganic hybrid amphiphilic block copolymers, poly(l-lactide)–block–poly(N-isopropylacrylamide) (POSS(PLLA–b–PNIPAM)). The self-assembly behavior of POSS(PLLA–b–PNIPAM) block copolymers in aqueous solution was investigated by dynamic light scattering (DLS), transmission electron microscopy (TEM) and atomic force microscopy (AFM). DLS showed the PNIPAM block in the aggregates is temperature-responsive and its phase-transition is reversible. TEM proved that the star-shaped POSS(PLLA–b–PNIPAM) amphiphilic block copolymers can self-assemble into the vesicles in aqueous solution. The vesicular wall and coronas are composed of the hydrophobic POSS core and PLLA, and hydrophilic PNIPAM blocks, respectively. Therefore, POSSPLLA and POSS(PLLA–b–PNIPAM) block copolymers, as a class of novel organic–inorganic hybrid materials with the advantageous properties, can be potentially used in biological and medical fields.  相似文献   

12.
Copolymer composition and comonomer distribution are important magnitudes in polymer material that have a big effect on different kind of properties and consequently there are several ways to study.In this work several ethylene/propylene copolymers synthesized with two different metallocene catalysts and a Ziegler–Natta catalyst and covering a wide composition range were studied. Characterization was carried out by nuclear magnetic resonance (13C NMR) and by gel permeation chromatography with 4 detectors (GPC-4D): refractive index, viscosity, multi-angle light scattering and infrared detectors.Different behaviour in the comonomer distribution along the molecular weight was obtained for metallocene and for ZN copolymers as expected due to the differences between these catalytic systems. Nevertheless, Ziegler–Natta copolymers present more homogeneous comonomer distribution due to the synthesis method. Study of conformation of chains in solution was improved by defining the scaling law of Rg against the number of repeat units because it avoids the effect of the repetitive unit size. Both metallocene copolymer sets show similar dependence of q value with the copolymer composition, however Ziegler–Natta copolymers show different behaviour with q values independent on copolymer composition. This different behaviour has been related with the effects of the heterogeneity of the ethylene distribution and of the molecular weight of the samples.  相似文献   

13.
We report the preparation of a new electroluminescent polymer by the oxidative coupling copolymerization of N‐(4‐n‐butylphenyl)phenoxazine and 9,9‐di‐n‐butylfluorene with ferric(III) chloride. The reaction yields soluble polymers with a weight‐average molecular weight as high as 9000. The reactivity has been studied with respect to the reaction time, temperature, and feed ratio of the comonomers. Under optimum conditions, a copolymer with a 50% comonomer incorporation ratio can be obtained in a 75% yield. The polymers have been characterized with differential scanning calorimetry, cyclic voltammetry, and optical spectroscopy. A simple single‐layer light‐emitting‐diode device of an indium tin oxide/polymer/Mg–Ag structure shows a luminance of 200 cd/m2 at an 18‐V operating voltage. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4338–4345, 2006  相似文献   

14.
The title copolymers have been prepared by the free-radical-initiated copolymerization of 2-chlorostyrene (2-ClSt), 4-chlorostyrene (4-ClSt) and 2,6-dichlorostyrene (2,6-DClSt) with maleic anhydride (MAn) in toluene at 65°C. Copolymers of chlorinated styrenes with MAn prepared under different monomer-to-monomer ratios in the feed have alternating composition. In all cases, the mixture of comonomers forms charge-transfer complex monomers (CTC). The initial rate of copolymerization increases with the increase of electron donors in the comonomer feed, and the highest rates were at the equimolar ratios of comonomers in the feed. The thermal stability of the polymers was measured by thermogravimetric analysis in nitrogen. Homopolymers decompose by a one-step mechanism, while copolymers are more thermostable and decompose by a two-step mechanism. Glass transition temperatures (Tgs) of homopolymers are lower than Tgs of copolymers. The number and weight average molecular weights of chlorinated copolymers are higher than those of the corresponding homopolymers.  相似文献   

15.
Styrene, methyl acrylate, and N,N-dimethylacrylamide were copolymerized with small proportions of p-nitrophenyl acrylate or p-nitrophenyl esters of CH2?CHCONH(CH2)nCOOH (n = 1,3,5). The aminolysis of these copolymers in dioxane and chlorobenzene solution was compared with the corresponding reaction of low molecular weight analogs. The ratio of the reactivity of the polymer substituent and its analog was found to be insensitive to the nature of the amine but strongly dependent on the nature of the polymer backbone. Poly(dimethylacrylamide) chains carrying active ester substituents were in some cases much more reactive than their analogs due to the activating effect of the dimethylamide groups. In the case of the p-nitrophenyl acrylate–styrene copolymer, the aminolysis exhibited a dispersion of the rate constant due to its sensitivity to stereoisomerism in the vicinity of the active ester, but no similar effects were observed with the other copolymers.  相似文献   

16.
Thermo-responsive monomers were designed to contain a Diels-Alder (DA) adduct such that cyclo-reversion would yield either the maleimide or the furan unit attached to the polymer chain. These thermally responsive monomers were then copolymerized with N-isopropylacrylamide (NIPAM) via reversible addition-fragmentation chain-transfer (RAFT) polymerization to yield linear gradient-copolymer structures as a comparison to existing nanogel/starlike systems to understand how polymer topology and composition influence solution-state properties. Using UV–Vis spectroscopy, it was determined that solution-state properties were thermally dependent and influenced by a number of variables such as comonomer feed ratio, polymer chain end functionality, and polymer backbone length and composition. Manipulation of the feed ratio allowed for control over the cloud point, including the breadth and location of phase separation. Thermal treatment of these copolymers revealed tunable and predictable variations in previously observed transitions, directly correlated to cleavage of the DA adducts and change in polymer backbone composition. Finally, on cooling cycles, a double sigmoid was sometimes observed, indicating a complex globule to random coil transition correlated to polymer chain end composition. These studies help understand how to untie the “monkey's fist.”  相似文献   

17.
The copolymerization of propene with 7‐methyl‐1,6‐octadiene (MOD) catalyzed by Cp*TiMe3/B(C6F5)3 ( A ) and rac‐C2H4(Ind)2ZrCl2/methylaluminoxane ( B ) in toluene under 1 bar propene gave copolymers with unsaturated side chains. Under these conditions, catalyst A produced copolymers with an atactic backbone structure of type 1 , with 3.5–19.6 mol % MOD incorporation and weight‐average molecular weight = 0.7–2.7 × 105. Using catalyst B , copolymers 2 with 0.4–3.8 mol % MOD incorporation were prepared. The comonomer incorporation was a linear function of the feed ratio. The titanium catalyst A had a significantly higher affinity for MOD than the sterically more hindered zirconocene B . Postpolymerization modification of the side‐chain C?C bond allowed the facile introduction of a wide variety of functional groups. Epoxidation and especially ozonolysis of the C?C bond, to give ? CHO and ? COOH functionalized copolymers, proved to be very facile routes to functionalized polypropenes. According to monitoring by NMR, most of these transformations proceed in an essentially quantitative conversion. As an example of potential applications of such polymers, polypropenes with covalently attached dyes were prepared that are suitable for blending. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1484–1497, 2002  相似文献   

18.
Copolymerizations of ethylene/1-butene, and ethylene/1-decene and terpolymerization of ethylene/1-butene/1-decene were carried out in n-heptane with various concentrations of comonomer in the feed. Cp2ZrCl2-methylaluminoxane (MAO) was used as catalyst. When comonomers were added into the ethylene polymerization, the activity of the catalyst increased significantly and continued to do so as the concentration of the comonomer was increased. At the same time as the comonomer concentration and catalyst activity increased, the molecular weight and crystallinity of the polymers decreased. An important reason for the activity enhancement may, therefore, be that the comonomer takes part in the activation of catalytic centers, decreasing the activation energy required for monomer to insert into the active centers. Use of Cp2ZrCl2-MAO catalyst allowed the preparation of ethylene/1-decene copolymers containing 20 wt % of 1-decene. © 1993 John Wiley & Sons, Inc.  相似文献   

19.
Telechelic copolymers of styrene and different N‐substituted‐maleimides (SMIs) with a molecular weight of 2000–8000 g/mol were synthesized using the starved‐feed‐reactor technique and were nearly bifunctional when the monomer feed had a high styrene concentration. The COOH‐terminated rigid SMI blocks were polycondensated with OH‐terminated poly(tetrahydrofuran) (PTHF) blocks, with a molecular weight of 250–1000 g/mol, which are the flexible parts in the generated homogeneous multiblock copolymer. The entanglement density, which is closely related to the toughness of materials, increased in these flexible SMI copolymers (νe = 5.2 · 1025 m−3) compared to the unflexibilized ones (νe = 2.4 · 1025 m−3). The glass transition temperature of these flexibilized, single‐phase multiblock copolymers was still high enough to qualify them as engineering plastics. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3550–3557, 2000  相似文献   

20.
Temperature-sensitive poly(glycidol)-b-poly(N-isopropylacrylamide) block copolymers (PGl55PNIPAAmy) were synthesised and their aqueous solutions investigated by different methods including differential scanning calorimetry (DSC), UV-VIS spectroscopy as well as dynamic and static light scattering. The cloud point temperature (T c) depended on the composition of the investigated block copolymers and increased with decreasing length of the PNIPAAm block in PGl55PNIPAAmy copolymers. In contrast, the enthalpy of phase separation of PNIPAAm segments measured by DSC decreased with decreasing length of the PNIPAAm block in the polymer. These findings can be correlated with the behaviour of homo-PNIPAAm with similar molecular weights indicating that the influence of PGl on the local environment and phase separation of PNIPAAm chains is similar to the influence observed for PNIPAAm chains bearing different low molecular weight end group. Using DLS measurement, it was shown that the aggregation process depended on the PGl/PNIPAAm block ratio. If the PGl/PNIPAAm ratio was low, stable core-shell aggregates were formed. In contrast, the tendency to formation of large unstable, loose aggregates was observed for copolymers with high PGl/PNIPAAm ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号