首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
An improved spectrophotometric determination of uranium(VI) is proposed using 4-(2-pyridylazo)resorcinol(PAR) in the presence of benzyldimethylstearyltrimethylammonium chloride(BSTAC) as a cationic surfactant. The calibration graph is linear in the range of 0.3–60 g/10 ml uranium(VI), measuring the absorbance at 550 nm. The reproducibility for 19.0 g/10 ml uranium(VI) is 0.57%. The third-derivative method using the third-derivative distance (d3A/d3) among 1 530 nm, 3 594 nm and 2 565 nm was also investigated.  相似文献   

2.
Mori I  Toyoda M  Fujita Y  Matsuo T  Taguchi K 《Talanta》1994,41(2):251-254
Iron(III) was preconcentrated by collection on an organic solvent-soluble membrane filter (nitrocellulose (NC)) of the iron(III)-1-(2-pyridylazo)-2-naphthol (PAN) complex in the presence of capriquat as an oily quaternary ammonium salt. Third-derivative spectrophotometry was used for measurement of the third-derivative distance (d(3)A/dlambda(3)) between lambda(1) = 520 nm and lambda(2) = 590 nm or lambda(3) = 660 nm and lambda(4) = 724 nm of the iron(III)-PAN-capriquat complex or PAN-capriquat in dimethylsulfoxide (DMSO) following preconcentration. The calibration curve was linear in the range of 1-10 mug iron(III)/5.0 ml DMSO solution. The proposed method was about five-fold more sensitive and more selective than using zero-order spectrophotometry.  相似文献   

3.
A new rapid and sensitive FI method is reported for spectrophotometric determination of trace chromium(VI) in electroplating waste water. The method is based on the reaction of Cr(VI) with sodium diphenylamine sulfonate (DPH) in acidic medium to form a purple complex (lambda(max) = 550 nm). Under the optimized conditions, the calibration curve is linear in the range 0.04-3.8 microg ml(-1) at a sampling rate of 30 h(-1). The detection limit of the method is 0.0217 microg ml(-1), and the relative standard deviation is 1.1% for eight determinations of 2 microg ml(-1) Cr(VI). The proposed method was applied to the determination of chromium in electroplating waste water with satisfactory results.  相似文献   

4.
A simple and efficient method for the selective separation and preconcentration of uranium(VI) using homogeneous liquid-liquid extraction was developed. Tri-n-octylphosphine oxide (TOPO) and tri-n-butylphosphate (TBP) were investigated as complexing ligands, and perfluorooctanoate ion (PFOA-) was applied as a phase separator agent under strongly acidic conditions. Under the optimal conditions ([PFOA-] = 1.7 x 10(-3) M, [TOPO] = 5.4 x 10(-4) M, [HNO3] = 0.3 M, [acetone] = 3.2% v/v) 10 microg of uranium in 40 ml aqueous phase could be extracted quantitatively into 8 microl of the sedimented phase. The maximum concentration factor was 5000-fold. However, an effort for the quantitative extraction using TBP was inefficient and the percent recovery was at most 56.7. The influence of the type and concentration of acid solution, optimum amount of the ligand, type and volume of the organic solvent, concentration of PFOA, volume of the aqueous sample and effect of different diverse ions on the extraction and determination of uranium(VI) were investigated. The proposed method was applied to the extraction and determination of uranium(VI) in natural water samples.  相似文献   

5.
Derivative spectrophotometry offers a useful approach for the analysis of drugs in multi-component mixtures. In this study a third-derivative spectrophotometric method was used for simultaneous determination of cyproterone acetate and ethinylestradiol using the zero-crossing technique. The measurements were carried out at wavelengths of 316 and 226 nm for cyproterone acetate and ethinylestradiol respectively. The method was found to be linear (r2>0.999) in the range of 0.5-6 mg/100 ml for cyproterone acetate in the presence of 35 microg/100 ml ethinylestsradiol at 316 nm. The same linear correlation (r2>0.999) was obtained in the range of 10-80 microg/100 ml of ethinylestradiol in the presence of 2 mg/100 ml of cyproterone acetate at 226 nm. The limit of determination was 0.5 mg/100 ml and 10 microg/100 ml for cyproterone acetate and ethinylestradiol respectively. The method was successfully applied for simultaneous determination of cyproterone acetate and ethinylestradiol in pharmaceutical preparations without any interferences from excipients.  相似文献   

6.
Polyoxyethylene nonyl phenyl ether with 2 oxyethylene units (PONPE-2) is immiscible with water and is suspended on the surface of aqueous layer as a droplet. Its unique property is applied to the solvent extraction of uranium(VI) with 5-Br-PADAP. Uranium(VI) chelates are quantitatively enriched into a small volume of PONPE-2 and the absorbance was measured in the mixed ethanol solution. The apparent molar absorptivity of uranium(VI)-5-Br-PADAP complex at 578 nm is 6.46×104 l mol–1 cm–1 and the calibration curve is linear over the range of 0.7–7 g of uranium(VI) per 1.5 ml of the final solution.  相似文献   

7.
Uranium(VI) is adsorbed as a uranium trifluoroethylxanthate (TFEX)-cetyltrimethylammonium (CTMA) ion-pair complex on microcrystalline naphthalene quantitatively in the pH range 4.2 - 7.0. Without cetyltrimethylammonium as the counter ion, the adsorption is hardly 70%. The metal has been desorbed with HCI and determined with a differential pulse polarograph. Uranium can alternatively be quantitatively adsorbed on TFEX-CTMA-naphthalene adsorbent packed in a column at a flow rate of 1 - 5 ml/min and determined similarly. A well-defined peak has been obtained in this medium at -0.20 V versus a saturated calomel electrode. Cyclic voltammetry, differential pulse polarography and D.C. polarography studies indicate that uranium has been reduced irreversibly under these conditions. The detection limit is 0.30 microg/ml at the minimum instrumental settings (signal-to-noise ratio of 2) (with a preconcentration factor of 10, the detection limit would be 30 ng/ml for uranium when the volume in the cell is 15 ml). However if the volume in the cell is 5 ml, it would have been 10 ng/ml with a preconcentration factor of 30. Linearity is maintained in a concentration range of 0.5 - 19.0 microg/ml (2.1 - 79.83 x 10(-9) M) with a correlation factor of 0.9994 and a relative standard deviation of +/-1.1% (in this case 7.5 microg may be concentrated from 150 ml of the aqueous sample where its concentration is as low as 50 ng/ml). Various parameters, such as the effect of the pH, volume of the aqueous phase, flow rate and the interference of a large number of metal ions and anions on the determination of uranium, have been studied in detail to optimize the conditions for its trace determination in various complex materials, like alloys, coal fly ash, biological, synthetic, and waste-water samples.  相似文献   

8.
A spectrophotometric method has been developed for the determination of uranium(VI) using ascorbic acid. Uranium in the hexavalent state forms a reddish-brown coloured complex with ascorbic acid. The colour intensity of the complex is maximum at pH 4.2-4.5 and is stable for 24 hr. The absorbances of uranium(VI)-ascorbic acid complex at 360 and 450 nm are used for its quantification. Uranium in the range 8-200 microg/ml has been determined with good precision. The method allows the determination of uranium in the presence of many metal ions present as impurities. The described method is simple, accurate and applicable to uranium concentration relevant to the PUREX process and thus can be used for analytical control purposes.  相似文献   

9.
A new derivative spectrophotometric method for rapid and selective trace analysis of Ga3+ and In3+ and for their simultaneous determination using 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol in a cationic micellar medium is reported. Molar absorptivity and Sandell's sensitivity of 1:1 Ga+ and In3+ complexes at their lambda(max) 553 nm and 558 nm are: 7.22 x 10(4) l mol(-1) cm(-1) and 5.85 x 10(4) l mol(-1) cm(-1), and 0.96 ng cm(-2) and 1.96 ng cm(-2), respectively. Linearity is observed in the concentration range 0.023-0.700 microg ml(-1) for gallium and 0.076-1.52 microg ml(-1) for indium; IUPAC detection limit is 0.012 and 0.035 ng ml(-1), respectively. These metal ions interfere with the determination of each other. However, 0.07-0.70 microg ml(-1) Ga3+ and 0.115-1.150 microg ml(-1) In3+ could be determined simultaneously when present together by the derivative method without any prior separation. The proposed procedures have been successfully applied for the individual and simultaneous determination of gallium and indium in synthetic binary mixtures, standard reference materials and environmental samples.  相似文献   

10.
《Analytical letters》2012,45(15):3097-3111
Abstract

The complex formation reaction between iron(III) and 4-(2-pyridylazo) resorcinol(PAR) in the presence of various water soluble surfactants((N-hexadecylpyridinium chloride (HPC), poly(vinylalcohol)(PVA), sodium dodecylsulfate(SDS), sodium N-lauroylsarcosine(SL)) alone or in combination at weakly acidic media was systematically investigated. An improved and more sensitive spectrophotometric method for the determination of iron was proposed by zero-order and third-derivative spectrophotometry using the PAR-iron(III)-HPC ternary complex system at about pH 5.2. The calibration curve was rectilinear in the ranges of 0 – 15.0 μg iron(III) in a final 10-ml on the zero-order spectrophotometry. Also, upon the third-derivative spectrophotometry, Beer's law was obeyed in the range of 0 – 8.0 μg iron(III)/10 ml by measuring the distance between the absorbance peak(λ1 = 527 nm) and the valley (λ2 = 560 nm). The apparent molar absorptivity was 4.8 × 104 1 mol?1 cm?1 in zero-order spectrophotometry, and 1.36 × 105 mol?1 cm?1 in third-derivative spectrophotometry. The effect of foreign ions was decreased within ½ – ¼-fold in comparison with the method in the presence of PVA without HPC. Especially, the third-derivative spectrophotometric method was sensitive and selective, and made possible to assay mixed sample solution containing iron(III) and copper(II), etc.  相似文献   

11.
Hung SC  Qu CL  Wu SS 《Talanta》1982,29(7):629-631
A highly sensitive method for spectrophotometric determination of uranium has been devised. The method is based on formation of a red-violet 1:2 (metal:ligand) complex from the reaction of uranium(VI) with 2-(3,5-dibromo-2-pyridylazo)-5-diethylaminophenol (3,5-diBr-PADAP) in the presence of an anionic surfactant, sodium lauryl sulphate. Its molar absorptivity is found to be 9.1 x 10(4)l.mole(-1).cm(-1). The absorbance is constant in the range pH 8.4-9.9 Beer's law is obeyed for 0-1.4 mug/ml concentrations of uranium. In the presence of DCTA the method is selective for uranium, and can be used for the determination of trace amounts of uranium in water samples.  相似文献   

12.
Time-resolved laser-induced fluorescence spectroscopy (TRLFS) was combined with batch experiments to study the sorption of uranium(VI) onto gibbsite (gamma-Al(OH)3). The experiments were performed under ambient conditions in 0.1 M NaClO4 solution in the pH range from 5.0 to 8.5 using a total uranium concentration of 1x10(-5) M, and a solid concentration of 0.5 g/40 ml. Two uranyl surface species with fluorescence lifetimes of 330+/-115 and 5600+/-1640 ns, respectively, were identified. The first species was dominating the more acid pH region whereas the second one became gradually more prominent towards higher pH values. The fluorescence spectra of both adsorbed uranyl(VI) surface species were described with six characteristic fluorescence emission bands situated at 479.5+/-1.1, 497.4+/-0.8, 518.7+/-1.0, 541.6+/-0.7, 563.9+/-1.2, and 585.8+/-2.1 nm. The surface species with the short-lived fluorescence lifetime of 330 ns is attributed to a bidentate mononuclear inner-sphere surface complex in which the uranyl(VI) is bound to two reactive OH- groups at the broken edge linked to one Al. The second surface species with the significant longer fluorescence lifetime of 5600 ns was attributed to small sorbed clusters of polynuclear uranyl(VI) surface species. The longer fluorescence lifetime of the long-lived uranyl surface species at pH 8.5 is explained with the growing average size of the adsorbed polynuclear uranyl surface species.  相似文献   

13.
Yatirajam V  Arya SP 《Talanta》1976,23(8):596-598
Vanadium(V) is rapidly reduced by dithionite to V(III) which is extracted as the oxinate into carbon tetrachloride. Vanadium is determined by measuring absorbance of the complex at lambda(max) = 420-425 nm with a sensitivity of 0.004 microg/cm(2) and Beer's law range of 0-7 microg/ml . Several mg of some important elements can be tolerated if they are masked. Molybdenum interferes seriously. The method has been applied to synthetic samples, rutile and ilmenite with satisfactory results. Using ordinary reagents and taking 10 min or less in series for a determination, the method has a sensitivity rarely exceeded by others with a much higher tolerance for other elements.  相似文献   

14.
An ion-exchange phase absorptiometric method with Arsenazo III has been developed for the determination of uranium (VI). A flow cell with 0.1 ml of anion exchange resin was employed to achieve a detection limit for uranium of 0.16 microg/l. in 100 ml of a seawater sample. The sensitivity is about 300 times higher than for corresponding solution spectrophotometry.  相似文献   

15.
A highly sensitive spectrophotometric determination of human serum albumin (HSA) with 3',4',5',6'-tetrachlorogallein (T.Cl.Gall)-Mo(VI) complex in a Triton X-100 + polyvinyl alcohol micellar medium is proposed. This method can be used to determine up to ca. 150 micrograms/10 ml of HSA from the optical absorbance at 640 nm, and is superior in sensitivity to the other extremely sensitive spectrophotometric methods. The great sensitivity of this method results from the use of third-derivative spectrophotometry. The binding parameters of T.Cl.Gall-Mo(VI) complex to HSA are n = 77.3 and K = 1.05 x 10(4) M-1 as determined from dual double-reciprocal plots. It is suggested that the colored complex in this system may be the association complex between [HSA]m+ and [MoVI(T.Cl.Gall)2]n- involving hydrophobic interaction between HSA and T.Cl.Gall. The proposed method should also be useful for the detection and determination of some peptides (e.g. low molecular weight peptides containing basic amino acids), as well as proteins.  相似文献   

16.
A simple, rapid, highly sensitive and selective spectrophotometric method for the determination of tungsten(VI) in trace amounts is developed using 3-hydroxy-2-(2'-thienyl)-4-oxo-4H-1-benzopyran (HTB) as a reagent for the complexation of metal ion and extracting the 1:2 (metal:ligand) complex into dichloromethane from 0.2 M HCl solution. It obeys Beer's law in the range 0-2.8 microg Wml(-1) with molar absorptivity and Sandell's sensitivity at 415 nm as 6.45 x 10(4) L mol(-1) cm(-1) and 0.0029 microg W(VI) cm(-2), respectively. The method is free from the interference of a large number (39) of elements and handles satisfactorily the analysis of various samples of varying complexity.  相似文献   

17.
A direct fluorimetric method for determining Cr(VI) in aqueous solutions is described. The nonfluorescent reagent 2-(-pyridyl)-thioquinaldinamide (PTQA) and Cr(VI) interact to produce an intensely fluorescent species [ex(max) 360 nm; em(max) 500 nm] showing constant and maximum fluorescence intensity in slightly acidic media (0.18N–1.08N H2SO4). The fluorescence attains its maximum value within 5 min and remains unchanged for 24 h. The system obeys Beer's law from 2 ng/ml to 0.8 g/ml of Cr(VI). Over sixty cations, anions and complexing agents are without any effect on the fluorimetric determination of 0.1 g/ml of Cr(VI). The method has been tested with synthetic mixtures, steels, solutions containing both Cr(III) and Cr(VI), and environmental samples.  相似文献   

18.
A sensitive spectrophotometric method has been developed for the determination of uranium. The uranium(IV)-chlorophosphonazo-III complex is extracted into 3-methyl-1-butanol from 1.5–3.0 M hydrochloric acid solution. Maximal absorbance occurs at 673 nm and Beer's law is obeyed over the range of 0–15 μg per 10 ml of the organic phase. The molar absorptivity is 12.1·104 1 mole?1 cm?1. Uranium can be determined in the presence of fluoride. sulfate and phosphate. Nitrate ion and elements (chromium, copper, iron) which affect the reduction of uranium(VI) or stability of uranium(IV) interfere.  相似文献   

19.
Havel J  Vrchlabský M  Kohn Z 《Talanta》1992,39(7):795-799
A method was developed for the selective determination of trace concentrations of uranium(VI) by flow-injection analysis (FIA) with fluorimetric detection. Uranium(VI) is selectively separated and/or pre-concentrated from a volume up to 20 ml on an activated silica gel microcolumn (2 x 40 mm) from a medium of 0.03M EDTA, 0.06M tartrate, and/or 0.05M NaF at pH = 9.3. After washing the column the uranium is eluted with a mixture of 1.33M sulphuric and phosphoric acids and determined with a relative standard deviation not exceeding 6% for concentrations in the range 10-250 mug/l. The detection limit was estimated to be 0.1-0.2 mug of uranium. The method has been verified on artificial water samples with high content of the interfering elements and applied to analysis of waste and natural waters.  相似文献   

20.
Jasim F 《Talanta》1969,16(6):752-756
A spectrophotometric method is described for the separation and determination of trace quantities of vanadium(IV) and (V) from uranium(VI). Vanadium is selectively separated from uranium by extraction at pH 6.5 into n-propyl 2,3,4-trihydroxybenzoate (PTB) dissolved in t-pentanol. Up to 120 microg of vanadium can be determined by measuring the absorbance of the blue complex in the organic phase at 585 nm. Uranium(VI) remains in the aqueous layer and can be determined spectrophotometrically by its reaction with PTB in aqueous acetone to produce a brown-red colour at pH 7.6-8.8. Solutions containing 25-275 microg of uranium absorb at 370-380 nm according to Beer's law. By modification, this procedure can be used for the determination of the two metals in native phosphate rocks. The effects of diverse ions on the determination of vanadium and uranium have also been examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号