首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The total synthesis and evaluation of three key ramoplanin aglycon analogues are detailed. The first (5a) represents replacement of the labile depsipeptide ester with a stable amide (HAsn2 --> Dap2) with removal of the HAsn pendant carboxamide, and it was found to be slightly more potent than the natural aglycon in antimicrobial assays providing a new lead structure with an improved profile and a more stable and accessible macrocyclic template on which to conduct structure-function studies. In contrast, a second amide analogue 5b which contains a single additional methylene relative to 5a (HAsn2 --> Dab2) was found to be inactive in antimicrobial assays (>100-fold loss in activity). The third key analogue 5c in which the Asn1 lipid side chain was replaced with an acetyl group revealed that it contributes significantly to the antimicrobial activity (16-fold) of the ramoplanins, but is not essential.  相似文献   

2.
A convergent total synthesis of the ramoplanin A2 and ramoplanose aglycon is disclosed. Three key subunits composed of residues 3-9 (heptapeptide 15), pentadepsipeptide 26, and pentapeptide 34 (residues 10-14) were prepared, sequentially coupled, and cyclized to provide the 49-membered depsipeptide core of the aglycon. Key to the preparation of the pentadepsipeptide 26 incorporating the backbone ester was the asymmetric synthesis of an orthogonally protected L-threo-beta-hydroxyasparagine and the development of effective and near-racemization free conditions for esterification of its hindered alcohol (EDCI, DMAP, 0 degrees C). The coupling sites were chosen to maximize the convergency of the synthesis including that of the three subunits, to prevent late stage racemization of carboxylate-activated phenylglycine-derived residues, and to enlist beta-sheet preorganization of an acyclic macrocyclization substrate for 49-membered ring closure. As such, macrocyclization at the chosen Phe(9)-D-Orn(10) site may benefit from both beta-sheet preorganization as well as closure at a D-amine terminus. Deliberate late stage incorporation of the subunit bearing the labile depsipeptide ester and a final stage Asn(1) side chain introduction provides future access to analogues of the aglycons which themselves are reported to be equally potent or more potent than the natural products in antimicrobial assays.  相似文献   

3.
4.
Full details of a convergent total synthesis of the ramoplanin A2 and ramoplanose aglycon are disclosed. Three key subunits composed of residues 3-9 (heptapeptide 15), pentadepsipeptide 26 (residues 1, 2 and 15-17), and pentapeptide 34 (residues 10-14) were prepared, sequentially coupled, and cyclized to provide the 49-membered depsipeptide core of the aglycon. Key to the preparation of the pentadepsipeptide 26 incorporating the backbone ester was the asymmetric synthesis of an orthogonally protected l-threo-beta-hydroxyasparagine and the development of effective and near-racemization free conditions for esterification of its hindered alcohol (EDCI, DMAP, 0 degrees C). The coupling sites were chosen to maximize the convergency of the synthesis including that of the three subunits, to prevent late stage racemization of carboxylate-activated phenylglycine-derived residues, and to enlist beta-sheet preorganization of an acyclic macrocyclization substrate for 49-membered ring closure. By altering the order of final couplings, two macrocyclization sites, Phe(9)-d-Orn(10) and Gly(14)-Leu(15), were examined. Macrocyclization at the highly successful Phe(9)-d-Orn(10) site (89%) may benefit from both beta-sheet preorganization as well as closure at a d-amine terminus within the confines of a beta-turn at the end of the H-bonded antiparallel beta-strands. A more modest, but acceptable macrocyclization reaction at the Gly(14)-Leu(15) site (40-50%) found at the other end of the H-bonded antiparallel beta-strands within a small flexible loop may also benefit from preorganization of the cyclization substrate, is conducted on a substrate incapable of competitive racemization, and accommodates the convergent preparation of analogues bearing depsipeptide modifications. Deliberate late-stage incorporation of the subunit bearing the labile depsipeptide ester and a final stage Asn(1) side-chain introduction provides future access to analogues of the aglycons which themselves are equally potent or more potent than the natural products in antimicrobial assays.  相似文献   

5.
HUN-7293 (1), a naturally occurring cyclic heptadepsipeptide, is a potent inhibitor of cell adhesion molecule expression (VCAM-1, ICAM-1, E-selectin), the overexpression of which is characteristic of chronic inflammatory diseases. Representative of a general approach to defining structure-function relationships of such cyclic (depsi)peptides, the parallel synthesis and evaluation of a complete library of key HUN-7293 analogues are detailed enlisting solution-phase techniques and simple acid-base liquid-liquid extractions for isolation and purification of intermediates and final products. Significant to the design of the studies and unique to solution-phase techniques, the library was assembled superimposing a divergent synthetic strategy onto a convergent total synthesis. An alanine scan and N-methyl deletion of each residue of the cyclic heptadepsipeptide identified key sites responsible for or contributing to the biological properties. The simultaneous preparation of a complete set of individual residue analogues further simplifying the structure allowed an assessment of each structural feature of 1, providing a detailed account of the structure-function relationships in a single study. Within this pharmacophore library prepared by systematic chemical mutagenesis of the natural product structure, simplified analogues possessing comparable potency and, in some instances, improved selectivity were identified. One potent member of this library proved to be an additional natural product in its own right, which we have come to refer to as HUN-7293B (8), being isolated from the microbial strain F/94-499709.  相似文献   

6.
The first total synthesis of the potent antitumor antibiotic (-)-tetrazomine has been accomplished. A new method for the formation of the allylic amine precursor to an azomethine ylide has been developed and exploited in an efficient [1,3]-dipolar cycloaddition to afford the key tetracyclic intermediate used in the synthesis of (-)-tetrazomine. Several analogues of tetrazomine have been synthesized and tested for antimicrobial and biochemical activity.  相似文献   

7.
The emergence of bacteria resistant to vancomycin, often the antibiotic of last resort, poses a major health problem. Vancomycin-resistant bacteria sense a glycopeptide antibiotic challenge and remodel their cell wall precursor peptidoglycan terminus from d-Ala-d-Ala to d-Ala-d-Lac, reducing the binding of vancomycin to its target 1000-fold and accounting for the loss in antimicrobial activity. Here, we report [Ψ[C(═NH)NH]Tpg(4)]vancomycin aglycon designed to exhibit the dual binding to d-Ala-d-Ala and d-Ala-d-Lac needed to reinstate activity against vancomycin-resistant bacteria. Its binding to a model d-Ala-d-Ala ligand was found to be only 2-fold less than vancomycin aglycon and this affinity was maintained with a model d-Ala-d-Lac ligand, representing a 600-fold increase relative to vancomycin aglycon. Accurately reflecting these binding characteristics, it exhibits potent antimicrobial activity against vancomycin-resistant bacteria (MIC = 0.31 μg/mL, VanA VRE). Thus, a complementary single atom exchange in the vancomycin core structure (O → NH) to counter the single atom exchange in the cell wall precursors of resistant bacteria (NH → O) reinstates potent antimicrobial activity and charts a rational path forward for the development of antibiotics for the treatment of vancomycin-resistant bacterial infections.  相似文献   

8.
The total synthesis of [Ψ[C(═S)NH]Tpg(4)]vancomycin aglycon (8) and its unique AgOAc-promoted single-step conversion to [Ψ[C(═NH)NH]Tpg(4)]vancomycin aglycon (7), conducted on a fully deprotected substrate, are disclosed. The synthetic approach not only permits access to 7, but it also allows late-stage access to related residue 4 derivatives, alternative access to [Ψ[CH(2)NH]Tpg(4)]vancomycin aglycon (6) from a common late-stage intermediate, and provides authentic residue 4 thioamide and amidine derivatives of the vancomycin aglycon that will facilitate ongoing efforts on their semisynthetic preparation. In addition to early stage residue 4 thioamide introduction, allowing differentiation of one of seven amide bonds central to the vancomycin core structure, the approach relied on two aromatic nucleophilic substitution reactions for formation of the 16-membered diaryl ethers in the CD/DE ring systems, an effective macrolactamization for closure of the 12-membered biaryl AB ring system, and the defined order of CD, AB, and DE ring closures. This order of ring closures follows their increasing ease of thermal atropisomer equilibration, permitting the recycling of any newly generated unnatural atropisomer under progressively milder thermal conditions where the atropoisomer stereochemistry already set is not impacted. Full details of the evaluation of 7 and 8 along with several related key synthetic compounds containing the core residue 4 amidine and thioamide modifications are reported. The binding affinity of compounds containing the residue 4 amidine with the model D-Ala-D-Ala ligand 2 was found to be only 2-3 times less than the vancomycin aglycon (5), and this binding affinity is maintained with the model d-Ala-d-Lac ligand 4, representing a nearly 600-fold increase in affinity relative to the vancomycin aglycon. Importantly, the amidines display effective dual, balanced binding affinity for both ligands (K(a)2/4 = 0.9-1.05), and they exhibit potent antimicrobial activity against VanA resistant bacteria ( E. faecalis , VanA VRE) at a level accurately reflecting these binding characteristics (MIC = 0.3-0.6 μg/mL), charting a rational approach forward in the development of antibiotics for the treatment of vancomycin-resistant bacterial infections. In sharp contrast, 8 and related residue 4 thioamides failed to bind either 2 or 4 to any appreciable extent, do not exhibit antimicrobial activity, and serve to further underscore the remarkable behavior of the residue 4 amidines.  相似文献   

9.
Halocidin is a heterodimeric antimicrobial peptide isolated from a tunicate, Halocynthia aurantium. We used the most active of the two monomers, an 18 residue amidated peptide, as lead structure and determined the role of each amino acid with alanine scanning. The results obtained led to the synthesis of a first generation of analogues with antimicrobial activity. The selectivity towards bacterial versus mammalian cells has been explored, as well as the specificity for gram positive (Staphylococcus aureus ATCC 25923) versus gram negative bacteria (Escherichia coli ATCC 25922). GRAVY (grand average of hydropathicity) was used to analyze the results.  相似文献   

10.
A de novo solid-phase synthesis of the cyclic lipodepsipeptide daptomycin via Boc chemistry was achieved. The challenging ester bond formation between the nonproteinogenic amino acid kynurenine was achieved by esterification of a threonine residue with a protected tryptophan. Subsequent late-stage on-resin ozonolysis, inspired by the biomimetic pathway, afforded the kynurenine residue directly. Synthetic daptomycin possessed potent antimicrobial activity (MIC100=1.0 μg mL−1) against S. aureus, while five other daptomycin analogues containing (2R,3R)-3-methylglutamic acid, (2S,4S)-4-methylglutamic acid or canonical glutamic acid at position twelve prepared using this new methodology were all inactive, clearly establishing that the (2S,3R)-3-methylglutamic acid plays a key role in the antimicrobial activity of daptomycin.  相似文献   

11.
Studies of analogues of a recently discovered enantioselective peptide-based catalyst for enantioselective acylation reactions have led to mechanistic insight and improved catalysts. Systematic replacement of each residue within the parent peptide with alanine of the appropriate stereochemistry allows for an unambiguous evaluation of the kinetic role of each amino acid side chain in the catalyst. The results of the alanine scan support a bifunctional catalysis mechanism at the heart of the origin of enantioselectivity. In addition, an experimentally derived solution structure of the peptide-based catalyst is presented that supports a key role for each residue within the peptide chain.  相似文献   

12.
A five‐step total synthesis of the marine natural product synoxazolidinone A was achieved through a diastereoselective imine acylation/cyclization cascade. Synoxazolidinone B and a series of analogues were also prepared to explore the potential of these 4‐oxazolidinone natural products as antimicrobial agents. These studies confirmed the importance of the chlorine substituent for antimicrobial activity and revealed simplified dichloro derivatives that are equally potent against several bacterial strains.  相似文献   

13.
Emerging antimicrobial resistance urges the discovery of antibiotics with unexplored, resistance-breaking mechanisms. Armeniaspirols represent a novel class of antibiotics with a unique spiro[4.4]non-8-ene scaffold and potent activities against Gram-positive pathogens. We report a concise total synthesis of (±) armeniaspirol A in six steps with a yield of 20.3% that includes the formation of the spirocycle through a copper-catalyzed radical cross-coupling reaction. In mechanistic biological experiments, armeniaspirol A exerted potent membrane depolarization, accounting for the pH-dependent antibiotic activity. Armeniaspirol A also disrupted the membrane potential and decreased oxygen consumption in mitochondria. In planar lipid bilayers and in unilamellar vesicles, armeniaspirol A transported protons across membranes in a protein-independent manner, demonstrating that armeniaspirol A acted as a protonophore. We provide evidence that this mechanism might account for the antibiotic activity of multiple chloropyrrole-containing natural products isolated from various origins that share a 4-acylphenol moiety coupled to chloropyrrole as a joint pharmacophore. We additionally describe an efflux-mediated mechanism of resistance against armeniaspirols.

The antibiotic armeniaspirol A depolarized bacterial and mammalian cell membranes through a protonophore activity, that accounts for its potent antibiotic effects. A total synthesis of (±) armeniaspirol A was achieved in six steps.  相似文献   

14.
An effective synthesis of [Psi[CH(2)NH]Tpg(4)]vancomycin aglycon (5) is detailed in which the residue 4 amide carbonyl of vancomycin aglycon has been replaced with a methylene. This removal of a single atom was conducted to enhance binding to D-Ala-D-Lac, countering resistance endowed to bacteria that remodel their D-Ala-D-Ala peptidoglycan cell wall precursor by a similar single atom change (ester O for amide NH). Key elements of the approach include a synthesis of the modified vancomycin ABCD ring system featuring a reductive amination coupling of residues 4 and 5 for installation of the deep-seated amide modification, the first of two diaryl ether closures for formation of the modified CD ring system (76%, 2.5-3:1 kinetic atropodiastereoselectivity), a Suzuki coupling for installation of the hindered AB biaryl bond (90%) on which the atropisomer stereochemistry could be thermally adjusted, and a macrolactamization closure of the AB ring system (70%). Subsequent DE ring system introduction enlisted a room-temperature aromatic nucleophilic substitution reaction for formation of the remaining diaryl ether (86%, 6-7:1 kinetic atropodiastereoselectivity), completing the carbon skeleton of 5. Consistent with expectations and relative to the vancomycin aglycon, 5 exhibited a 40-fold increase in affinity for D-Ala-D-Lac (K(a) = 5.2 x 10(3) M(-1)) and a 35-fold reduction in affinity for D-Ala-D-Ala (K(a) = 4.8 x 10(3) M(-1)), providing a glycopeptide analogue with balanced, dual binding characteristics. Beautifully, 5 exhibited antimicrobial activity (MIC = 31 microg/mL) against a VanA-resistant organism that remodels its D-Ala-D-Ala cell wall precursor to d-Ala-d-Lac upon glycopeptide antibiotic challenge, displaying a potency that reflects these binding characteristics.  相似文献   

15.
The macrocyclic antibiotic mangrolide A has been described to exhibit potent activity against a number of clinically important Gram‐negative pathogens. Reported is the first enantioselective total synthesis of mangrolide A and derivatives. Salient features of this synthesis include a highly convergent macrocycle preparation, stereoselective synthesis of the disaccharide moiety, and two β‐selective glycosylations. The synthesis of mangrolide A and its analogues enabled the re‐examination of its activity against bacterial pathogens, and only minimal activity was observed.  相似文献   

16.
Spiro beta-lactone-based proteasome inhibitors were discovered in the context of an asymmetric catalytic total synthesis of the natural product (+)-lactacystin (1). Lactone 4 was found to be a potent inhibitor of the 26S proteasome, while its C-6 epimer (5) displayed weak activity. Crystallographic studies of the two analogues covalently bound to the 20S proteasome permitted characterization of the important stabilizing interactions between each inhibitor and the proteasome's key catalytic N-terminal threonine residue. This structural data support the hypothesis that the discrepancy in potency between 4 and 5 may be due to differences in the hydrolytic stabilities of the resulting acyl enzyme complexes.  相似文献   

17.
The novel glycosphingolipid, β-D-GalNAcp(1-->4)[α-D-Fucp(1-->3)]-β-D-GlcNAcp(1-->)Cer (A), isolated from the marine sponge Aplysinella rhax has a unique structure, with D-fucose and N-acetyl-D-galactosamine moieties attached to a reducing-end N-acetyl-D-glucosamine through an α1-->3 and β1-->4 linkage, respectively. We synthesized glycolipid 1 and some non-natural di- and trisaccharide analogues 2-6 containing a D-fucose residue. Among these compounds, the natural type showed the most potent nitric oxide (NO) production inhibitory activity against LPS-induced J774.1 cells. Our results indicate that both the presence of a D-Fucα1-3GlcNAc-linkage and the ceramide aglycon portion are crucial for optimal NO inhibition.  相似文献   

18.
The indolo[2,3-a]carbazole glycosides are potent antitumor antibiotics currently undergoing clinical trials for the treatment of numerous types of cancer. AT2433-A1 is the most complex member of this family of compounds possessing a unique disaccharide with a sensitive aminodeoxysugar and an unsymmetric aglycon. The synthesis of this natural product requires a method for glycosylation that sets the stereochemistry of the anomeric center and the regiochemistry of the aglycon. These goals were accomplished by carrying out the Mannich cyclization of a bis-3, 4-(3-indolyl)succinimide to give a key class of indoline intermediates that could be glycosylated stereoselectively with complex carbohydrates without hydroxyl protection or activation. The regiochemistry of the Mannich cyclization was precisely controlled by choosing between kinetic or thermodynamic conditions. This strategy culminated in the first synthesis of the antitumor antibiotic AT2433-A1.  相似文献   

19.
The power of rhodium–carbene methodology in chemistry is demonstrated by the synthesis of a structurally complex polyazole antibiotic. Plantazolicin A, a novel soil‐bacterium metabolite, comprises a linear array of 10 five‐membered rings in two pentacyclic regions that derive from ribosomal peptide synthesis followed by extensive posttranslational modification. The compound possesses potent antimicrobial activity, and is selectively active against the anthrax‐causing organism. A conceptually different synthesis of plantazolicin A is reported in which the key steps are the use of rhodium(II)‐catalyzed reactions of diazocarbonyl compounds to generate up to six of the seven oxazole rings of the antibiotic. NMR spectroscopic studies and molecular modeling reveal a likely dynamic hairpin conformation with a hinge region around the two isoleucine residues. The compound has modest activity against methicillin‐resistant Staphylococcus aureus (MRSA).  相似文献   

20.
Ramoplanin is a lipglycodepsipeptide antibiotic that inhibits peptidoglycan biosynthesis. Its mechanism of action has been the subject of debate. It was originally proposed to inhibit the MurG step of peptidoglycan synthesis by binding Lipid I. In this paper, we report that ramoplanin inhibits bacterial transglycosylases by binding to Lipid II, the substrate for these enzymes. The inhibition curves reveal that the inhibitory species has a stoichiometry of 2:1 ramoplanin:Lipid II. A Job titration confirms that ramoplanin binds as a dimer to Lipid II. The apparent dissociation constant is in the nanomolar range, which is unusually low given the nature of the interacting species. We show that Lipid II binding is coupled to the formation of a higher order species, which may explain the tight binding. We also present a testable model for the binding-competent dimeric conformation of ramoplanin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号