首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 588 毫秒
1.
Vortex excitations have been detected at temperatures both below and above the critical temperature when investigating local magnetic fields on the surface of a Bi2Sr2Ca2Cu3O10 single crystal by means of an electron paramagnetic resonance (EPR) probe. A thin layer of a diphenyl picrylhydrazyl organic radical deposited on the crystal surface is used as the EPR probe. A narrow EPR signal makes it possible to detect weak distortions of the magnetic field appearing at TT c. The analysis of the temperature dependences of the resonance field and the EPR linewidth is thebasis of the assumption of the vortex nature of magnetic excitations in this temperature range.  相似文献   

2.
The field and temperature dependences of the magnetization of a LiTbF4 single crystal are measured at temperatures ranging from 2 to 300 K in magnetic fields (up to 5 T) directed parallel and perpendicular to the crystallographic axis c. It is revealed that the temperature dependence of the induced (van Vleck) transverse magnetization exhibits nonmonotonic behavior with a maximum in the vicinity of the liquid-nitrogen temperature. The results of magnetization measurements are used to determine the parameters of the crystal field and interionic magnetic interactions.  相似文献   

3.
The kinetics of magnetization reversal of a thin LSMO film has been studied for the first time. It is shown that the magnetic domain structure critically depends on the conditions of structure formation. In the demagnetized state (after zero-field cooling from T c ), a maze-like domain microstructure with perpendicular magnetization is formed in the film. However, after field cooling and/or saturating magnetization by a field of arbitrary orientation, the [110] direction of spontaneous magnetization in the film plane is stabilized; this pattern corresponds to macrodomains with in-plane magnetization. Further film magnetization reversal (both quasi-static and pulsed) from this state is implemented via nucleation and motion of 180° “head-to-head” domain walls. Upon pulse magnetization reversal, the walls “jump” at a distance proportional to the applied field strength and then undergo thermally activated drift. All dynamic characterisitcs critically depend on the temperature when the latter varies around the room temperature.  相似文献   

4.
The physical and structural properties of Fe1.11Te and Fe1.11Te0.5Se0.5 have been investigated by means of X-ray and neutron diffraction as well as physical property measurements. For the Fe1.11Te compound, the structure distortion from a tetragonal to monoclinic phase takes place at 64 K accompanied with the onset of antiferromagnetic order upon cooling. The magnetic structure of the monoclinic phase was confirmed to be of antiferromagnetic configuration with a propagation vector k = (1/2, 0, 1/2) based on Rietveld refinement of neutron powder diffraction data. The structural/magnetic transitions are also clearly visible in magnetic, electronic and thermodynamic measurements. For superconducting Fe1.11Te0.5Se0.5 compound, the superconducting transition with T c = 13.4 K is observed in the resistivity and ac susceptibility measurements. The upper critical field H c2 is obtained by measuring the resistivity under different magnetic fields. The Kim’s critical state model is adopted to analyze the temperature dependence of the ac susceptibility and the intergranular critical current density is calculated as a function of both field amplitude and temperature. Neutron diffraction results show that Fe1.11Te0.5Se0.5 crystalizes in tetragonal structure at 300 K as in the parent compound Fe1.11Te and no structural distortion is detected upon cooling to 2 K. However an anisotropic thermal expansion anomaly is observed around 100 K.  相似文献   

5.
The magnetic and magnetodielectric properties of Ho0.5Nd0.5Fe3(BO3)4 ferroborate with the competing Ho–Fe and Nd–Fe exchange couplings have been experimentally and theoretically investigated. Step anomalies in the magnetization curves at the spin-reorientation transition induced by the magnetic field Bc have been found. The spontaneous spin-reorientation transition temperature TSR ≈ 8 K has been refined. The measured magnetic properties and observed features are interpreted using a single theoretical approach based on the molecular field approximation and calculations within the crystal field model of the rare-earth ion. Interpretation of the experimental data includes determination of the crystal field parameters for Ho3+ and Nd3+ ions in Ho0.5Nd0.5Fe3(BO3)4 and parameters of the Ho–Fe and Nd–Fe exchange couplings.  相似文献   

6.
We report synthesis, structure/micro-structure, resistivity under magnetic field [ρ(T)H], Raman spectra, thermoelectric power S(T), thermal conductivity κ(T), and magnetization of ambient pressure argon annealed polycrystalline bulk samples of MgB2, processed under identical conditions. The compound crystallizes in hexagonal structure with space group P6/mmm. Transmission electron microscopy (TEM) reveals electron micrographs showing various types of defect features along with the presence of 3–4 nm thick amorphous layers forming the grain boundaries of otherwise crystalline MgB2. Raman spectra of the compound at room temperature exhibited characteristic phonon peak at 600 cm-1. Superconductivity is observed at 37.2 K by magnetic susceptibility χ(T), resistivity ρ(T), thermoelectric power S(T), and thermal conductivity κ(T) measurements. The power law fitting of ρ(T) give rise to Debye temperature (ΘD) at 1400 K which is found consistent with the theoretical fitting of S(T), exhibiting Θ D of 1410 K and carrier density of 3.81 × 1028/m3. Thermal conductivity κ(T) shows a jump at 38 K, i.e., at Tc, which was missing in some earlier reports. Critical current density (Jc) of up to 105 A/cm2 in 1–2 T (Tesla) fields at temperatures (T) of up to 10 K is seen from magnetization measurements. The irreversibility field, defined as the field related to merging of M(H) loops is found to be 78, 68 and 42 kOe at 4, 10 and 20 K respectively. The superconducting performance parameters viz. irreversibility field (Hirr) and critical current density Jc(H) of the studied MgB2 are improved profoundly with addition of nano-SiC and nano-diamond. The physical property parameters measured for polycrystalline MgB2 are compared with earlier reports and a consolidated insight of various physical properties is presented.  相似文献   

7.
Layered cobalt oxides Ca3Co4O9 thin films have been grown directly on c-cut sapphire substrates using pulsed laser deposition. X-ray diffraction and transmission electron microscopy characterizations show that the deposited films present the expected monoclinic structure and a texture along the direction perpendicular to the Al2O3(001) plane. The Ca3Co4O9 structure presents six variants in the film plane. Rutherford backscattering spectroscopy shows that the films are stoichiometric and that the film thickness agrees with the nominal value. The susceptibility χ of the films, recorded along the c-axis of the substrate, after field cooling and zero field cooling in an applied field of 1 kOe shows two magnetic transitions at 19 and 370 K which agree well with previous findings on single crystal samples. In turn, at low temperature (5 K), the magnetization curve along the c-axis exhibits coercive field and remanent magnetization much smaller than those reported for bulk samples, which can be related to the influence of structural variants and structural defects.  相似文献   

8.
The field and temperature dependences of magnetization and the temperature dependences of the initial magnetic susceptibility have been theoretically studied for three crystallographic directions in a trigonal NdFe3(BO3)4 antiferromagnetic crystal. The calculations were performed using a molecular field approximation and a crystal field model for the rare-earth subsystem. The obtained theoretical expressions are applied to the interpretation of recent experimental data [1–4] on the magnetic properties of NdFe3(BO3)4. The results of calculations show a good agreement with experiment. The proposed theory adequately describes (i) anomalies of the Schottky type in the temperature dependence of the magnetic susceptibility, (ii) nonlinear curves of magnetization in the basal plane in a magnetic field up to 1 T (showing evidence of the first-order phase transitions) and their evolution with the temperature, and (iii) the field and temperature dependences of magnetization in a magnetic field up to 9 T.  相似文献   

9.
Experimental data on the magnetization of canted antiferromagnet CoCO3 (TN = 18.1 K) in the paramagnetic region are described by the isotropic g factor g = g = 6.5 that differs from the anisotropic values g = 3.05 and g = 4.95 obtained in electron paramagnetic resonance (EPR) measurements at T = 4.2 K on Co2+ ions in magnetically diluted crystals. The g-factor values calculated in the Abragam-Pryce and Weiss molecular field approximations using the magnetization data in the magnetic ordered region correspond to data obtained in EPR measurements. It is shown that the absence of the anisotropy of the g factor at high temperatures cannot be explained in the approximations used. Causes of the observed discrepancies are discussed.  相似文献   

10.
BaCO3 and anatase-type TiO2 were adopted as initial materials to prepare BaTiO3 powder by the solid-state reaction method at a heating rate of 350°C/h. The electron paramagnetic resonance (EPR) technique was employed to monitor the formation of BaTiO3. TiO2 showed a series of complicated EPR signals associated primarily with Fe impurities. The formation of BaTiO3 can be monitored in terms of the evolution of EPR signals associated with Fe impurities with calcination and measurement temperatures. The activation of the g = 2.004 signal above the Curie point of BaTiO3 and the disappearance of the other EPR signals in the BaCO3/TiO2 mixture at room temperature are characteristic of the formation of BaTiO3.  相似文献   

11.
Electron paramagnetic resonance (EPR) studies on a single crystal of diamagnetic compound La2Si2O7, potentially a phosphorescent/luminescent/laser material, with the Gd3+ ion substituting for the La3+ ion, were carried out at X-band (9.61 GHz) over the 4–295 K temperature range. The asymmetry exhibited by the Gd3+ EPR line positions for the orientations of the external magnetic field about the magnetic Z- and Y-axes in the ZY-plane was ascribed to the existence of monoclinic site symmetry at the site of the Gd3+ ion, as confirmed by the significant values of the spin Hamiltonian parameters g YZ , b 2 −1, b 4 m (m = 1, 3), b 6 m (m = 1, 3, 5), estimated by fitting all EPR line positions observed at room temperature for the orientation of the magnetic field in the magnetic ZX- and ZY-planes using a rigorous least-squares fitting procedure. At 8 K measurements were only carried out for orientation of B in the magnetic ZX-plane, due to difficulty in orientation of the crystal inside the cryostat, enabling estimation of all spin Hamiltonian parameters b n m except those characterized by negative m values and g YZ . The absolute sign of the zero-field splitting parameter b 2 0 was determined to be negative from the relative intensities of the lines at 8 K. Authors' address: Sushil K. Misra, Physics Department, Concordia University, 1455 de Maisonneuve Boulevard West, Montreal, Quebec H3G 1M8, Canada  相似文献   

12.
We observe the negative shift of the magnetic hysteresis loop at 5 K, while the sample is cooled in external magnetic field in case of 30% of Fe substitution in LaMnO3. The negative shift and training effect of the hysteresis loops indicate the phenomenon of exchange bias. The cooling field dependence of the negative shift increases with the cooling field below 7.0 kOe and then, decreases with further increase of cooling field. The temperature dependence of the negative shift of the hysteresis loops exhibits that the negative shift decreases sharply with increasing temperature and vanishes above 20 K. Temperature dependence of dc magnetization and ac susceptibility measurements show a sharp peak (Tp) at 51 K and a shoulder (Tf) around 20 K. The relaxation of magnetization shows the ferromagnetic and glassy magnetic components in the relaxation process, which is in consistent with the cluster-glass compound.  相似文献   

13.
The neodymium ferroborate NdFe3(BO3)4 undergoes an antiferromagnetic transition at T N = 30 K, which manifests itself as a λ-type anomaly in the temperature dependence of the specific heat C and as inflection points in the temperature dependences of the magnetic susceptibility χ measured at various directions of an applied magnetic field with respect to the crystallographic axes of the sample. Magnetic ordering occurs only in the subsystem of Fe3+ ions, whereas the subsystem of Nd3+ ions remains polarized by the magnetic field of the iron subsystem. A change in the population of the levels of the ground Kramers doublet of neodymium ions manifests itself as Schottky-type anomalies in the C(T) and χ(T) dependences at low temperatures. At low temperatures, the magnetic properties of single-crystal NdFe3(BO3)4 are substantially anisotropic, which is determined by the anisotropic contribution of the rare-earth subsystem to the magnetization. The experimental data obtained are used to propose a model for the magnetic structure of NdFe3(BO3)4.  相似文献   

14.
We report the electron paramagnetic resonance (EPR) studies of MgTi2O4 in the 300–140 K range. Above the transition temperature T t (~258 K), the EPR results indicate that MgTi2O4 is paramagnetic. The parameters of the EPR spectra show an anomalous change at T t. The clear EPR lines can be observed in temperature between T t and 220 K. Besides that the EPR intensity, g value, and EPR linewidth increase with decreasing temperature; in temperature range below 220 K, no clear EPR line can be detected. The EPR spectra results demonstrate that magnetic spin-singlet state and the orbital density wave of MgTi2O4 system are formed gradually with decreasing temperature at low temperature range.  相似文献   

15.
Using different temperature and field protocols, the memory behaviors in the dc magnetization and magnetic relaxation are observed at temperature below blocking temperature TB = 93 K in weakly interacting manganite La0.6Pb0.4MnO3 nanoparticles. The results indicate that the magnetic dynamics of this nanoparticle system is strongly correlated with a wide distribution of particle relaxation times, which may arise from the particle weak interaction and distribution of the particle size.  相似文献   

16.
The EPR spectra of Ce3+ impurity ions in LiYF4, LiLuF4, and LiTmF4 double-fluoride single crystals have been investigated at a frequency of ∼9.3 GHz in the temperature range 5–25 K. The effective g factors of the ground Kramers doublet of the cerium ions in three crystals are close to each other (g = 2.737, g = 1.475 for LiYF4:Ce3+). A superhyperfine structure of the EPR spectrum of Ce3+ ions in the LiTmF4 Van Vleck paramagnet has been observed in the external magnetic field B oriented along the crystallographic axis c (Bc). The superhyperfine structure of the EPR soectra of the Ce3+ ions in the LiYF4 and LiLuF4 diamagnetic matrices is resolved for Bc. Possible factors responsible for this pronounced difference in the properties of the systems studied have been discussed.  相似文献   

17.
“Zero field”-Mössbauer and magnetization measurements have been performed on an amorphous Fe76Mo8Cu1B15 alloy in the temperature range of (10-340) K. The room-temperature Mössbauer spectrum exhibits magnetic dipole and electric quadrupole interactions. At approximately 306 K, the magnetic interactions vanish and the alloy shows fully paramagnetic behavior. On the other hand, the relative representation of paramagnetic component becomes weak with decreasing temperature and below 220 K the magnetic dipole interactions prevail. Below this temperature an anomaly in the low-temperature dependencies of ac susceptibility and of magnetization, measured during cooling the specimen from 340 K down to 20 K is observed. The anomaly on the magnetization curve vanishes in the field of 200 Oe.  相似文献   

18.
Resonance modes that are due to magnetic excitations in the exchange-coupled subsystems of rare-earth ions (R = Nd3+, Sm3+, and Gd3+) and Fe3+ ions have been detected in submillimeter transmission spectra (0.1–0.6 THz) of RFe3(BO3)4 iron borate-multiferroic single crystals. The strong interaction between spin oscillations of the Fe and R subsystems has been revealed, which determines the behavior of the modes depending on the anisotropy of the exchange splitting of the ground doublet of the R ion. It has been shown that the intensities of coupled modes (contributions to the magnetic permeability) depend strongly on the difference between the g factors of Fe and R ions. This dependence makes it possible to determine the sign of the latter g factor. In particular, a noticeable intensity of exchange Nd modes in NdFe3(BO3)4 is due to an increase in their contribution at g ⊥, ‖Nd < 0, while in GdFe3(BO3)4 with g Gdg Fe ≈ 2, the Fe and Gd contributions compensate each other and the exchange (Gd) mode is not observed. In spite of the weak interaction of Sm ions with the magnetic field, SmFe3(BO3)4 exhibits resonance modes, which are attributed to the excitation of Sm ions through the Fe subsystem.  相似文献   

19.
It was pointed out in some works that asymmetry of an electron paramagnetic resonance (EPR) line is generally caused by both the electrical conduction and the nondiagonal elements of the dynamic susceptibility of a magnetic subsystem. Direct measurements of the temperature dependences of the conductivity and the EPR line shape in a La0.70Ca0.25Ba0.05MnO3 sample showed that the conduction makes the predominant contribution to the EPR line asymmetry.  相似文献   

20.
The magnetic properties of the Nd0.5Gd0.5Fe3(BO3)4 single crystal have been studied in principal crystallographic directions in magnetic fields to 90 kG in the temperature range 2–300 K; in addition, the heat capacity has been measured in the range 2–300 K. It has been found that, below the Néel temperature T N = 32 K down to 2 K, the single crystal exhibits an easy-plane antiferromagnetic structure. A hysteresis has been detected during magnetization of the crystal in the easy plane in fields of 1.0–3.5 kG, and a singularity has been found in the temperature dependence of the magnetic susceptibility in the easy plane at a temperature of 11 K in fields B < 1 kG. It has been shown that the singularity is due to appearance of the hysteresis. The origin of the magnetic properties of the crystal near the hysteresis has been discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号