首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A Cu‐based organic–inorganic perovskite framework exhibits high‐temperature ferroelectricity with strong magnetoelectric effects. Both electric field control of magnetization and magnetic field control of polarization are realized. Theoretical calculations suggest that a new mechanism of hybrid improper ferroelectricity arising from the Jahn–Teller distortions of magnetic metal ions and tilting of the organic cations are responsible for the peculiar multiferroic behaviors.

  相似文献   


2.
The α‐PbO2‐type TiO2 is synthesized under high‐pressure and high‐temperature environment and it shows higher photocatalytic activity as compared to rutile and anatase under UV irradiation. The reduction in α‐PbO2‐type TiO2 induces visible‐light photocatalytic activity. These results indicate that α‐PbO2‐type TiO2 is an important candidate material for use in a photocatalytic matrix.

  相似文献   


3.
Using the recently suggested method of processing the data on external quantum efficiency as a function of output optical power, we have estimated the dependence of light extraction efficiency of high‐power light‐emitting diodes (LEDs) on their emission wavelength varied between 425 nm and 540 nm. The extraction efficiency is found to increase with the wavelength from ~80% to ~85% in this spectral range and to correlate with the wavelength dependence of reflectivity of the large‐area p‐electrode being the essential unit of the LED chip design. The correlation found identifies the incomplete reflection of emitted light from the electrode as the major mechanism eventually controlling the spectral dependence of the efficiency of light extraction from the LEDs.

  相似文献   


4.
Lead‐free and more air‐stable perovskite Cs2SnI6 absorber with a direct bandgap of 1.48 eV is synthesized via a modified solution process. Different nanostructured ZnO nanorod arrays as electron transport layers and hole blocking layers are grown by controlling the seed layer and used to fabricate mesoscopic perovskite solar cells with Cs2SnI6 as light absorber layer. The influences of ZnO seed layers and nanorod morphology on the device photovoltaic performance were also investigated. With careful control of ZnO nanorod length and pore size to ensure high loading of the Cs2SnI6 absorber, we achieved power conversion efficiency of near 1%.

  相似文献   


5.
In this Letter, we investigate the photovoltaic properties of heterojunction solar cells based on n‐GaN nanowire (NW)/ p‐Si substrate heterostructures by means of numerical modeling. Antireflection properties of the NW array on the top of Si substrate were studied theoretically to show an order of magnitude enhancement in antireflection properties in comparison to the pure Si surface (2.5% vs. 33.8%). In order to determine the optimal morphology and doping levels of the structure with maximum possible efficiency we simulated its properties. The carried out simulation showed that the maximum efficiency should be more than 20% under AM1.5D illumination. The proposed design opens new perspectives and opportunities in the field of heterojunction tandem solar cell researches.

  相似文献   


6.
Epitaxial thin films of ferromagnetic La0.7Sr0.3MnO3 (LSMO) and charge‐ordered, antiferromagnetic Y0.5Ca0.5MnO3 (YCMO) were deposited on SrTiO3 (100) substrates by pulsed laser deposition (PLD). The heterostructure undergoes tetragonal distortion due to strong biaxial tensile strain imposed by the substrate. The LSMO–YCMO bilayers exhibit significant exchange bias (EB) across the interface even in a very small remnant magnetic field (~5 Oe) present in the superconductor magnet. The unidirectional exchange anisotropy at the interface can be switched by reversing the polarity of the remnant magnetic field.

  相似文献   


7.
Perovskite‐like metal‐organic frameworks (MOFs) are hybrid materials of high interest for their potential in information storage technology, as Pb‐free substitutes for the widely used lead zirconate titanate (PZT) family of multiferroics. We report here a new, microwave‐assisted method of synthesis for perovskite‐like MOFs, which exploits the advantages of rapid and volumetric heating by microwaves in order to achieve synthesis within minutes, compared to days required by previously reported methods. The preliminary results demonstrate a broad control over the size and morphology of the products, by minor changes in the reaction conditions. An investigation of the effects of size and morphology on the magnetic and dielectric properties is presented here.

  相似文献   


8.
Despite the great promise of printed flexible electronics from 2D crystals, and especially graphene, few scalable applications have been reported so far that can be termed roll‐to‐roll compatible. Here we combine screen printed graphene with photonic annealing to realize radio‐frequency identification devices with a reading range of up to 4 meters. Most notably our approach leads to fatigue resistant devices showing less than 1% deterioration of electrical properties after 1000 bending cycles. The bending fatigue resistance demonstrated on a variety of technologically relevant plastic and paper substrates renders the material highly suitable for various printable wearable devices, where repeatable dynamic bending stress is expected during usage. All applied printing and post‐processing methods are compatible with roll‐to‐roll manufacturing and temperature sensitive flexible substrates providing a platform for the scalable manufacturing of mechanically stable and environmentally friendly graphene printed electronics.

  相似文献   


9.
We show that the nano‐scale delta‐layer doping profile in diamond can significantly influence both the carrier mobility and two‐dimensional conductivity. We numerically considered and compared a simple boron doping profile with one maximum at the delta‐layer center and a more complicated profile with two maxima inside the delta layer and a minimum at its center. As a result we concluded that in the last case the hole mobility and the two‐dimensional conductivity are higher by more than 3 times and 60% respectively than in the first case. The physical reason for the improvement is that for the two‐maxima doping profile the peaks of the carrier and ionized dopant densities are spatially separated, whereas for the simple one‐maximum doping profile they coincide. So, the carrier scattering on ionized dopants for the two‐maxima profile significantly decreases in comparison with the simple one‐maximum profile. The proposed two‐maxima delta‐layer doping profile can be used for the creation of diamond‐based micro‐ and nanoelectronics devices, e.g. high‐frequency field effect transistors.

  相似文献   


10.
The CuNi binary alloy can be significant as a catalyst for nitrogen‐doped (N‐doped) graphene growth considering controllable solubility of both carbon and nitrogen atoms. Here, we report for the first time the possibility of synthesizing substitutional N‐doped bilayer graphene on the binary alloy catalyst. Raman spectroscopy, atomic force microscopy and transmission electron microscopy analysis confirm the growth of bilayer and few‐layer graphene domains. X‐ray photoelectron spectroscopy analysis shows the presence of around 5.8 at% of nitrogen. Our finding shows that large N‐doped bilayer graphene domains can be synthesized on the CuNi binary alloy.

  相似文献   


11.
Polymer light‐emitting electrochemical cells (LECs) are two‐terminal, solid state devices with a mixed ionic/electronic conductor as the active layer. Once activated by a DC voltage or current, a doping‐induced homojunction dictates the electrical and optical response of the LEC, making it highly unique and attractive among organic devices. However, the depletion width, a fundamental parameter of any semiconductor homojunction, has never been determined experimentally for a static LEC junction. In this study, we apply spatially resolved photocurrent and photoluminescence (PL) scanning to an extremely large planar LEC that had been turned on to emit strongly then subsequently frozen. These concerted scanning and imaging studies depict a p–i–n junction structure in which the peak built‐in electric field lies at the interface between the intrinsic region and the p‐doped region. The corresponding 18 μm depletion width is very small compared to the 700 μm interelectrode spacing.

  相似文献   


12.
Polymers such as benzocyclobutene are commonly used as embedding materials for semiconductor nanostructures. During the curing process of the polymer up to 250 °C, a significant impact of strain can be induced on the embedded semiconductor material due to different thermal expansion coefficients. This strain has been revealed by X‐ray diffraction in free‐standing GaAs nanowires grown on a silicon substrate, embedded in a polymer matrix. It will be shown that this strain is released during the X‐ray irradiation if additionally an external static electric field is applied.

  相似文献   


13.
Phosphorus prefers three‐connected configurations due to its inequivalent sp3‐hybridization. In the past year, many quasi two‐dimensional three‐connected networks were proposed as possible phosphorene allotropes. In this Letter, a new quasi two‐dimensional three‐connected network is proposed as a new potential phosphorene allotrope (Hex‐star). Based on first‐principles method calculations, the structure, stability and electronic properties of Hex‐star were systematically investigated. Our results indicate that Hex‐star is dynamically stable and it is a semiconductor with quasi‐direct band gap of 1.81 eV based on HSE06 method. Perspective top view (left) and Magen–David‐like orthographic top view (right) of Hex‐star phosphorene.

  相似文献   


14.
A promising flexible X‐ray detector based on inorganic semiconductor PbI2 crystal is reported. The sliced crystals mechanically cleaved from an as‐grown PbI2 crystal act as the absorber directly converting the impinging X‐ray photons to electron hole pairs. Due to the ductile feature of the PbI2 crystal, the detector can be operated under a highly curved state with the strain on the top surface up to 1.03% and still maintaining effective detection performance. The stable photocurrent and fast response were obtained with the detector repeated bending to a strain of 1.03% for 100 cycles. This work presents an approach for developing efficient and cost‐effective PbI2‐based flexible X‐ray detector.

  相似文献   


15.
The production of high quality and cheap transparent electrodes is a fundamental step for a variety of optoelectronic devices. We present a method for the production of transparent conducting films optimised for electrical conduction in one direction. The deposition of a metal film through a perfectly aligned nanosphere‐lithography mask at variable incidence angle gave origin to parallel nanowires with thin interconnections. This structure showed excellent conductivity in one direction and high optical transparency.

Glass substrates under the crystalline areas of the polystyrene‐nanospheres mask.  相似文献   


16.
To investigate the soiling behavior of solar energy systems like photovoltaics or concentrated solar power, glass samples were exposed to outdoor conditions in Doha, Qatar for one month. Soil formation on the glass was characterized at microstructural level using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Further, elemental analysis of the crust was done with energy‐dispersive X‐ray spectroscopy (EDX). Small fibrous structures were found on the glass surface and dust particles, providing evidence of a cementation process leading to a strong adhesion of airborne dust particles. In contrast to the common perception, that cementation occurs via the precipitation of salt (sodium chloride) these needle structures were found to be mainly composed of oxides of Si, Mg and Al. This indicates that cementation processes in desert regions are enhanced by the growth of fibrous clay minerals.

Cross section of cemented dust particle, connected via small needles to the glass surface.  相似文献   


17.
This work demonstrates the formation of Ag fractals on top of a Ag:TiO2 thin film. The dendrite‐type objects emerged from a homogeneous and highly transparent Ag:TiO2 nanocomposite, via the mechanism of diffusion‐limited‐aggregation of Ag atoms, during heat‐treatment at 500 °C. A porous TiO2 matrix was also formed during this process, opening a wide range of possible applications, namely in sensing‐based ones, together with surface enhanced spectroscopies. Furthermore, fractals incorporate a wide range of shapes and spatial scales, inducing a potentially interesting optical response, over the whole visible range, presumably related with localized surface plasmon modes with very broad spectral distribution.

  相似文献   


18.
In this work, we report a ferroelectric memory with strained‐gate engineering. The memory window of the high strain case was improved by ~71% at the same ferroelectric thickness. The orthorhombic phase transition (from ferroelectric to anti‐ferroelectric transition) plays a key role in realizing negative capacitance effect at high gate electric field. Based on a reliable first principles calculation, we clarify that the gate strain accelerates the phase transformation from metastable monoclinic to orthorhombic and thus largely enhances the ferroelectric polarization without increasing dielectric thickness. This ferroelectric strain technology shows the potential for emerging device application.

  相似文献   


19.
Metal–insulator–metal capacitors (MIMCAP) with stoichiometric SrTiO3 dielectric were deposited stacking two strontium titanate (STO) layers, followed by intermixing the grain determining Sr‐rich STO seed layer, with the Ti‐rich STO top layer. The resulted stoichiometric SrTiO3 would have a structure with less defects as demonstrated by internal photoemission experiments. Consequently, the leakage current density is lower compared to Sr‐rich STO which allow further equivalent oxide thickness downscaling.

Schematic of MIMCAP with stoichiometric STO dielectric formed from bottom Sr‐rich STO and top Ti‐rich STO after intermixing during crystallization anneal.  相似文献   


20.
Structural, electronic and magnetic properties of Sr2FeOsO6 have been revisited by using the first‐principle calculations. Semiconducting behavior is reproduced. The band gap is 0.09 eV from generalized gradient approximation (GGA) and 0.30 eV by considering both SOC and U, a bit larger than the experimental observed 0.125 eV. In the C‐type antiferromagnetic configuration, spin frustration is found by analysing the magnetic exchange parameters, explaining the experimental observed magnetic complexity.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号