首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A series of transition metal chloro complexes with the tetradentate tripodal tris(2-amino-oxazoline)amine ligand (TAO) have been synthesized and characterized. X-Ray structural analyses of these compounds demonstrate the formation of the mononuclear complexes [M(II)(TAO)(Cl)](+), where M(II) = Cr, Mn, Fe, Co, Ni, Cu and Zn. These complexes exhibit distorted trigonal-bipyramidal geometry, coordinating the metal through an apical tertiary amine, three equatorial imino nitrogen atoms, and an axial chloride anion. All the complexes possess an intramolecular hydrogen-bonding (H-bonding) network within the cavity occupied by the metal-bound chloride ion. The metal-chloride bond distances are atypically long, which is attributed to the effects of the H-bonding network. Nuclear magnetic resonance (NMR) spectroscopy of the Zn complex suggests that the solid-state structures are representative of that observed in solution, and that the H-bonding interactions persist as well. Additionally, density functional theory (DFT) calculations were carried out to probe the electronic structures of the complexes.  相似文献   

2.
The 'Click'-derived tripodal ligand tris[(1-benzyl-1H-1,2,3-triazole-4-yl)methyl]amine, tbta, was used to synthesize the complexes [Fe(tbta)Cl]BF(4), 1, and [Co(tbta)Cl]BF(4), 2. Both complexes were characterized by (1)H NMR spectroscopy and elemental analysis. Single-crystal X-ray structural determination of 2 shows a 4 + 1 coordination around the cobalt(II) center with a rather long bond between Co(II) and the central amine nitrogen atom of tbta. Such a coordination geometry is best described as capped tetrahedral. 1 and 2 are thus the first examples of pseudotetrahedral coordinated Fe(II) and Co(II) complexes with tbta. A combination of SQUID susceptometry, EPR spectroscopy, M?ssbauer spectroscopy, and DFT calculations was used to elucidate the electronic structures of these complexes and determine the spin state of the metal center. Comparisons are made between the complexes presented here with related complexes of other ligands such as tris(2-pyridylmethyl)amine, tmpa, hydrotris(pyrazolyl) borate, Tp, and tris(2-(1-pyrazolyl)methyl)amine, amtp. 1 and 2 were tested as precatalysts for the homopolymerization of ethylene, and both complexes delivered distinctly different products in this reaction. Blind catalyst runs were carried out with the metal salts to prove the importance of the tripodal ligand for product formation.  相似文献   

3.
Two organic ligands based on a sugar-scaffold derived from galactose and possessing three O-CH(2)-pyridine pendant arms at the 3-, 4-, and 5-positions of the galactopyranose that act as chelates afford mononuclear complexes when reacted with a Ni(II) salt. The magnetization behavior in the form of M=f(H/T) plots suggests the presence of appreciable magnetic anisotropy within the two complexes. The analysis of the EPR spectra performed at two different temperatures (7 and 17 K) and at three frequencies (190, 285, and 380 GHz) leads to the conclusion that the anisotropy has a high degree of axiality (E/D=0.17 for the two complexes), but with a different sign of the D parameter. The spin hamiltonian parameters D and E were reproduced for the two complexes by using calculations based on the angular overlap model (AOM). The structural difference between the two complexes responsible of the sign of the D parameters was also determined using AOM calculations. A thorough analysis of the structures showed that the structural differences in the coordination sphere of the two complexes responsible of the different D parameter sign result from the nature of the sugar scaffolds. In complex 1, the sugar scaffold imposes an intramolecular hydrogen bond with one of the atoms linked to Ni(II); this arrangement leads to a distorted coordination sphere and positive D value, while the absence of such a hydrogen bond in complex 2 leads to a less distorted environment around the Ni center and to a negative D value.  相似文献   

4.
The structure optimizations of picolinaldehyde N-oxide thiosemicarbazone (Hpiotsc), 2-benzoylpyridine semicarbazone (H2BzPS), their imino tautomers and their complexes with Ni(II), Cu(II), and Zn(II) were carried out using DFT calculations. The structures of Hpiotsc and H2BzPS ligands, transition states of their tautomerizations were obtained at the B3LYP/6-31+G(d,p) level and their thermodynamic properties were derived from the frequency calculations at the same level of theory. The B3LYP/LANL2DZ-optimized structures of Hpiotsc and H2BzPS complexes with Ni(II), Cu(II), and Zn(II), and the thermodynamic properties of their complexations derived from the B3LYP/LANL2DZ-frequency calculations were obtained. The B3LYP/LANL2DZ-optimized geometrical parameters for the [Ni(Hpiotsc)2]2+, [Cu(Hpiotsc).Cl2], and [Zn(Hpiotsc).Cl2] complexes show good agreement with their corresponding X-ray crystallographic data.  相似文献   

5.
Tris[2-(N-ethyl)benzimidazylmethyl]amine (Etntb) and two of its complexes, [Zn(Etntb)(cinnamate)]NO3·2DMF (1) and [Ni(Etntb)(cinnamate)·(H2O)]NO3 (2) have been synthesized and characterized by physico-chemical and spectroscopic methods. Single-crystal X-ray diffraction revealed that the complexes have different structures. In complex 1, the coordination sphere around Zn(II) is distorted trigonal bipyramidal, whereas the coordination sphere around Ni(II) is distorted octahedral in complex 2. The DNA-binding properties of the free ligand and its complexes have been investigated by electronic absorption, fluorescence, and viscosity measurements. The results suggest that the ligand and both complexes bind to DNA via an intercalative mode, and their binding affinity for DNA follows the order 1 > 2> ligand.  相似文献   

6.
Selective adsorption of Ni(II) amine complexes used as precursors for supported catalysts was studied on amorphous silica surfaces. The nature of the adsorption sites was probed by [Ni(en)(dien) (H2O)]2+, [Ni(en)2(H2O)2]2+, and [Ni(dien)(H2O)3]2+ (en = ethylenediamine, dien = diethylenetriamine), which respectively contain one, two, and three labile aqua ligands. The silica surface acts as a mono- or polydentate ligand that can substitute the aqua ligands of the Ni(II) complexes in an inner-sphere adsorption mechanism. Room-temperature adsorption isotherms indicate that each nickel complex selects a limited number of adsorption sites; different sites are recognised by the three complexes, even though they have the same charge and comparable sizes. Several spectroscopic techniques (UV/Vis/NIR, EXAFS, and 29Si NMR) were used to confirm the selective character of the interaction of Ni(II) amine complexes with the silica surface. The specific sites include both silanol/silanolate groups in the same number as the original labile ligands and other surface groups that probably act as hydrogen-bond acceptors. These two types of groups cooperate to result in interfacial molecular-recognition phenomena with interactional complementarity.  相似文献   

7.
A library of tripodal amine ligands with two oxime donor arms and a variable coordinating or noncoordinating third arm has been synthesized, including two chiral ligands based on l-phenylalanine. Their Ni(II) complexes have been synthesized and characterized by X-ray crystallography, UV-vis absorption, circular dichroism, and FTIR spectroscopy, mass spectrometry, and room-temperature magnetic susceptibility. At least one crystal structure is reported for all but one Ni/ligand combination. All show a six-coordinate pseudo-octahedral coordination geometry around the nickel center, with the bis(oxime)amine unit coordinating in a facial mode. Three distinct structure types are observed: (1) for tetradentate ligands, six-coordinate monomers are formed, with anions and/or solvent filling out the coordination sphere; (2) for tridentate ligands, six-coordinate monomers are formed with Ni(II)(NO(3))(2), with one monodentate and one bidentate nitrate filling the remaining coordination positions; (3) for tridentate ligands, six-coordinate, bis(mu-Cl) dimers are formed with Ni(II)Cl(2), with one terminal and two bridging chlorides filling the coordination sphere. The UV-vis absorption spectra of the complexes show that the value of 10 Dq varies according to the nature of the third arm of the ligand. The trend based on the third arm follows the order alkyl/aryl < amide < carboxylate < alcohol < pyridyl < oxime.  相似文献   

8.
Complex formation of the two tetraamine ligands (2S,3S)-1,2,3,4-tetraaminobutane (threo-tetraaminobutane, ttab) and (2R,3S)-1,2,3,4-tetraaminobutane (erythro-tetraaminobutane, etab) with Co(III), Ni(II), Cu(II), and Pd(II) was investigated in aqueous solution and in the solid state. For Ni(II) and Cu(II), the pH-dependent formation of a variety of species [Mn(II)xLyHz](2x+z)+ was established by potentiometric titrations and UV/Vis spectroscopy. In sufficiently acidic solutions the divalent cations formed a mononuclear complex with the doubly protonated ligand of composition [M(H2L)]4+. An example of such a complex was characterized in the crystal structure of [Pd(H2ttab)Cl2]Cl2.H2O. If the metal cation was present in excess, increase of pH resulted in the formation of dinuclear complexes [M2L]4+. Such a species was found in the crystal structure of [Cu2(ttab)Br4].H2O. Excess ligand, on the other hand, lead to the formation of a series of mononuclear bis-complexes [Mq(HxL)(HyL)](q+x+y)+. The crystal structure of [Co(Hetab)2][ZnCl4]2Cl. H2O with the inert, trivalent Co(III) center served as a model to illustrate the structural features of this class of complexes. By using an approximately equimolar ratio of the ligand and the metal cation, a variety of polymeric aggregates both in dilute aqueous solution and in the solid state were observed. The crystal structure of Cu2(ttab)3Br4, which exhibits a two-dimensional, infinite network, and that of [Ni8(ttab)12]Br16.17.5H2O, which contains discrete chiral [Ni8(ttab)12]16+ cubes with approximate T symmetry, are representative examples of such polymers. The energy of different diastereomeric forms of such complexes with the two tetraamine ligands were analyzed by means of molecular mechanics calculations, and the implications of these calculations for the different structures are discussed.  相似文献   

9.

The novel transition metal saccharinato complexes of N-(2-hydroxyethyl)-ethylendiamine (HydEt-en) have been synthesized and characterized by elemental analyses, magnetic moments, UV-Vis and IR spectra. Coordination behaviour of HydEt-en has been studied. The Mn(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II) form mononuclear complexes, while the Fe(II) and Co(II) complexes are dimeric. The crystal structures of the [Cu(sac)2(HydEt-en)2] and [Cd(sac)2(HydEt-en)2] complexes, where sac is the deprotonated form of saccharin, were determined by x-ray diffraction. The metal ions are octahedrally coordinated by these ligands. The amine ligand acts as a bidentate N-donor ligand and its ethanol group is not involved in coordination. The sac ions coordinate through the deprotonated N as a monodentate ligand. The NH and OH groups of the amine ligand are involved in intra- and intermolecular hydrogen bonding with the carbonyl and sulphonyl oxygens of the sac ions to form a three-dimensional infinite network.  相似文献   

10.
The structures of 41 Ni(II) and 17 Cu(II) complexes of macrocyclic quadridentate ligands have been analyzed, and are discussed about bond lengths, bond angles, conformations, and configurations, upon which many conclusions are formed. The inter- or intra-molecular hydrogen bonds exist among ligands and hydrates in many compounds and play an important role in the structures. There are exhibited two distinct peaks on the histogram of the average Ni-N distances, corresponding to four coordination and six coordination; these average Ni-N distances are 1.95(4) Å and 2.10(5) Å, respectively. The most probable structures of Ni(II) macrocyclic compounds have coordination number six for the metal ion, chair forms for six-membered rings, planar structure for the metal ion and the four donor atoms of the quadridentate ligand and an inversion center at the central metal ion.  相似文献   

11.
Abstract

The novel high spin Ni2+ complexes of the topologically constrained tetraazamacrocycles (1–4) [4,11-dimethyl-1,4,8,11 - tetraazabicyclo[6.6.2]hexadecane (1); 4,10-dimethyl-1,4,7,10-tetraazabicyclo[6.5.2]pentadecane (2); 4,10-dimethyl-1,4,7,10-tetraazabicyclo[5.5.2]tetradecane (3); racemic-4,5,7,7,11,12,14,14-octamethyl-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane (4)] show striking properties. Potentiometric titrations of the ligands 2 and 4 revealed them to be proton sponges, as reported earlier for 1 [1]. Ligand 3 is less basic, losing its last proton with a pK = 11.3(2). Despite high proton affinities, complexation reactions in the absence of protons successfully yielded Ni2+ complexes in all cases. The X-ray crystal structures of Ni(1)(acac)+, Ni(3)(acac)+ and Ni(1)(OH2)2 2+ demonstrate that the ligands enforce a distorted octahedral geometry on Ni2+ with two cis sites occupied by other ligands. Magnetic measurements and electronic spectroscopy on the corresponding Ni(L)Cl2 (L = 1–3) complexes reveal that all are high spin and six-coordinate with typical magnetic moments. In contrast, [Ni(4)Cl+] is five-coordinate with a slightly higher magnetic moment and its own characteristic electronic spectrum. The extra methyl groups on ligand 4 define a shallow cavity, sterically allowing only one chloride ligand to bind to the nickel(II) ion.  相似文献   

12.
Nickel superoxide dismutase (NiSOD) is a recently discovered metalloenzyme that catalyzes the disproportionation of O2(*-) into O2 and H2O2. In its reduced state, the mononuclear Ni(II) ion is ligated by two cis-cysteinate sulfurs, an amine nitrogen (from the protein N-terminus), and an amide nitrogen (from the peptide backbone). Unlike many small molecule and metallopeptide-based NiN2S2 complexes, S-based oxygenation is not observed in NiSOD. Herein we explore the spectroscopic properties of a series of three Ni(II)N2S2 complexes (bisamine-ligated (bmmp-dmed)Ni(II), amine/amide-ligated (Ni(II)(BEAAM))(-), and bisamide-ligated (Ni(II)(emi))(2-)) with varying amine/amide ligation to determine the origin of the dioxygen stability of NiSOD. Ni L-edge X-ray absorption spectroscopy (XAS) demonstrates that there is a progression in ligand-field strength with (bmmp-dmed)Ni(II) having the weakest ligand field and (Ni(II)(emi))(2-)) having the strongest ligand field. Furthermore, these Ni L-edge XAS studies also show that all three complexes are highly covalent with (Ni(II)(BEEAM))(-) having the highest degree of metal-ligand covalency of the three compounds studied. S K-edge XAS also shows a high degree of Ni-S covalency in all three complexes. The electronic structures of the three complexes were probed using both hybrid-DFT and multiconfigurational SORCI calculations. These calculations demonstrate that the nucleophilic Ni(3d)/S(pi)* HOMO of these NiN2S2 complexes progressively decreases in energy as the amide-nitrogens are replaced with amine nitrogens. This decrease in energy of the HOMO deactivates the Ni-center toward O2 reactivity. Thus, the Ni-S bond is protected from S-based oxygenation explaining the enhanced stability of the NiSOD active-site toward oxygenation by dioxygen.  相似文献   

13.
The complexes [M(HIm)4(H2O)2](sac)2 (M=Co, Ni) and [Cd(HIm)2(sac)2]2 with saccharin (sac) and imidazole (HIm) were synthesized and their thermal (TG, DTG and DTA) behaviour in the interval from room temperature up to 1000°C in a static air atmosphere was investigated. Irrespectively of whether the deprotonated saccharinato residues are present as ligands or ions or both as ligands and ions, the anhydrous complexes regularly decompose in two stages. The thermal data of 16 saccharinato complexes (including the title compounds) were correlated with the respective structural data. The general thermal stability order of the saccharinato complexes can be represented as: Pb(II)<Zn(II)<Co(II)Ni(II)<Cd(II) (the stability of the Cu saccharinates depends on the particular compound) and is dictated by several structural factors, e.g. metal ionic radii, participation of the water in the coordination sphere of the metal and other structural characteristics. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.

Heterobi- and tri-nuclear complexes [LMM'Cl] and [(LM) 2 M'](M=Ni or Cu and M'=Mn, Fe or Co) have been synthesised. The heteronuclear complexes were prepared by stepwise reactions using two mononuclear Ni(II) and Cu(II) complexes of the general formula [HLM]·1/2H 2 O, as ligands towards the metal ions, Mn(II), Fe(III) and Co(II). The asymmetrical pentadentate (N 2 O 3 ) Schiff-base ligands used were prepared by condensing acetoacetylphenol and ethylenediamine, molar ratio 1 1, to yield a half-unit compound which was further condensed with either salicylaldehyde or naphthaldehyde to yield the ligands H 3 L 1 and H 3 L 2 which possess two dissimilar coordination sites, an inner four-coordinate N 2 O 2 donor set and an outer three-coordinated O 2 O set. 1 H NMR and IR spectra indicate that the Ni(II) and Cu(II) ions are bonded to the inner N 2 O 2 sites of the ligands leaving their outer O 2 O sites vacant for further coordination. Different types of products were obtained according to the type of metal ion. These products differ in stoichiometry according to the type of ligand in the parent compound. Electronic spectra and magnetic moments indicate that the structures of the parent Ni(II) and Cu(II) complexes are square-planar while the geometry around Fe(III), Mn(II) and Co(II) in their products are octahedral as elucidated from IR, UV-visible, ESR, 1 H NMR, mass spectrometry and magnetic moments.  相似文献   

15.
Two heterotrinuclear complexes, [Mn(II)(Ni(II)L)2].2CH3OH (where H3L = 1,1,1-tris(N-salicylideneaminomethyl)ethane) and [Fe(III)(Ni(II)L)2]NO3.C2H5OH, consisting of three face-sharing octahedra have been prepared; although these complexes have closely related structures and have the same 1-5/2-1 spin system, they show completely different magnetic interactions between the adjacent metal ions: ferromagnetic (Ni(II)-Mn(II)) and antiferromagnetic (Ni(II)-Fe(III)).  相似文献   

16.
Summary Copper(II) and nickel(II) complexes of triazacycloalkanes (pqr-cy), with p, q, r = 2–6, have been prepared and characterized by means of electronic and i.r. spectroscopy, and by magnetic measurements. With nickel(II) mononuclear octahedral complexes [Ni(pgr-cy)2](CI04)2 are formed, but for copper(II) mononuclear octahedral complexes were obtained only for 222-cy and 223-cy. The other ligands gave copper(II) complexes of the type [Cu(pgr-cy)CI]CIO4, [Cu(pgr-cy)OH]ClO4, Or [Cu(pgr-cy)CI1/2OH1/2]ClO4. The hydroxy complexes have low magnetic moments and binuclear hydroxy bridged structures are proposed.Ligand names: e.g. p = q = r = 2 is 1,4,7-triazacvclononane  相似文献   

17.
A series of binuclear organoplatinum(II) complexes, [(tBu3tpy)Pt--(C[triple chemical bond]C--1,2-C6H4)n--C[triple chemical bond]C--Pt(tBu3tpy)][ClO4]2 (1-7, n=1, 2, 3, 4, 5, 6, 8; tBu3tpy=4,4',4'-tri-tert-butyl-2,2':6',2'-terpyridine) with foldable oligo(ortho-phenyleneethynylene) linkers were prepared and characterized by spectroscopic methods and/or X-ray crystallographic analyses. In the crystal structures of 32.5 CH3OH, 5CH3CN, and 64 CH3CN, each of the bridging ortho-phenyleneethynylene ligands has a partially folded conformation. In aerated water/acetonitrile mixtures with water percentages larger than 40 %, the emission of complexes 3-7 are red-shifted and enhanced when compared to those recorded in acetonitrile. The red-shift in emission energy and enhanced emission intensity can be attributed to the inter- and/or intramolecular interactions induced by the addition of water to solutions of the platinum(II) complexes in acetonitrile. Data from dynamic light scattering and transmission electron microscopy studies revealed that these binuclear platinum(II) complexes aggregated into nanosized particles in acetonitrile/water mixtures. Hydrophobic folding of the ortho-phenyleneethynylene linkers in acetonitrile/water mixtures is postulated.  相似文献   

18.
Four new supramolecular compounds of Cu(II)-Ni(II) have been synthesized and characterized: [Cu(Me(2)oxpn)Ni(mu-NCS)(H(2)O)(tmen)](2)(ClO(4))(2) (1), [Cu(Me(2)oxpn)Ni(mu-NCS)(H(2)O)(tmen)](2)(PF(6))(2) (2), [Cu(oxpn)Ni(mu-NCS)(NCS) (tmen)](n) (3), and [Cu(Me(2)oxpn)Ni(mu-NCS)(NCS)(tmen)](n) (4), where oxpn = N,N'-bis(3-aminopropyl)oxamidate, Me(2)oxpn = N,N'-bis(3-amino-2,2'-dimethylpropyl)oxamidate, and tmen = N,N,N',N'-tetramethylethylenediamine. Their crystal structures were solved. Complexes 1 and 2 have the same tetranuclear cationic part but a different counteranion. The cationic part consists of two [Cu(Me(2)oxpn)Ni] moieties linked by SCN(-) bridged ligands and intra-tetranuclear hydrogen bonds. In the case of complex 3, a two-dimensional system was built, the thiocyanate ligand linking the dinuclear units gives a chain, and the chains are linked together by hydrogen bonds; intrachain hydrogen bonds are also present. For complex 4, the thiocyanate ligands produce intermolecular linkages between the dinuclear entities, giving a one-dimensional system; intrachain hydrogen bonds are also present. The magnetic properties of the four complexes were studied by susceptibility measurements vs temperature. DFT calculations were made to study the contribution of the SCN(-) and hydrogen bond bridges in the magnetic coupling.  相似文献   

19.
Ohtsu H  Tanaka K 《Inorganic chemistry》2004,43(9):3024-3030
Low-spin nickel(II) complexes containing bidentate ligands with modulated nitrogen donor ability, Py(Bz)2 or MePy(Bz)2 (Py(Bz)2 = N,N-bis(benzyl)-N-[(2-pyridyl)methyl]amine, MePy(Bz)2 = N,N-bis(benzyl)-N-[(6-methyl-2-pyridyl)methyl]amine), and a beta-diketonate derivative, tBuacacH (tBuacacH = 2,2,6,6-tetramethyl-3,5-heptanedione), represented as [Ni(Py(Bz)2)(tBuacac)](PF6) (1) and [Ni(MePy(Bz)2)(tBuacac)](PF6) (2) have been synthesized. In addition, the corresponding high-spin nickel(II) complexes having a nitrate ion, [Ni(Py(Bz)2)(tBuacac)(NO3)] (3) and [Ni(MePy(Bz)2)(tBuacac)(NO3)] (4), have also been synthesized for comparison. Complexes 1 and 2 have tetracoordinate low-spin square-planar structures, whereas the coordination environment of the nickel ion in 4 is a hexacoordinate high-spin octahedral geometry. The absorption spectra of low-spin complexes 1 and 2 in a noncoordinating solvent, dichloromethane (CH2Cl2), display the characteristic absorption bands at 500 and 540 nm, respectively. On the other hand, the spectra of a CH2Cl2 solution of high-spin complexes 3 and 4 exhibit the absorption bands centered at 610 and 620 nm, respectively. The absorption spectra of 1 and 2 in N,N-dimethylformamide (DMF), being a coordinating solvent, are quite different from those in CH2Cl2, which are nearly the same as those of 3 and 4 in CH2Cl2. This result indicates that the structures of 1 and 2 are converted from a low-spin square-planar to a high-spin octahedral configuration by the coordination of two DMF molecules to the nickel ion. Moreover, complex 1 shows thermochromic behavior resulting from the equilibrium between low-spin square-planar and high-spin octahedral structures in acetone, while complex 2 exists only as a high-spin octahedral configuration in acetone at any temperature. Such drastic differences in the binding constants and thermochromic properties can be ascribed to the enhancement of the acidity of the nickel ion of 2 by the steric effect of the o-methyl group in the MePy(Bz)2 ligand in 2, which weakens the Ni-N(pyridine) bond length compared with that of the nonsubstituted Py(Bz)2 ligand in 1.  相似文献   

20.
Copper(I) complexes with the tris(2-pyridylmethyl)amine (TPMA) ligand were synthesized and characterized to examine the effect of counteranions (Br(-), ClO(4)(-), and BPh(4)(-)), as well as auxiliary ligands (CH(3)CN, 4,4'-dipyridyl, and PPh(3)) on the molecular structures in both solid state and solution. Partial dissociation of one of the pyridyl arms in TPMA was not observed when small auxiliary ligands such as CH(3)CN or Br(-) were coordinated to copper(I), but was found to occur with larger ones such as PPh(3) or 4,4'-dipyridyl. All complexes were found to adopt a distorted tetrahedral geometry, with the exception of [Cu(I)(TPMA)][BPh(4)], which was found to be trigonal pyramidal because of stabilization via a long cuprophilic interaction with a bond length of 2.8323(12) ?. Copper(II) complexes with the general formula [Cu(II)(TPMA)X][Y] (X = Cl(-), Br(-) and Y = ClO(4)(-), BPh(4)(-)) were also synthesized to examine the effect of different counterions on the geometry of [Cu(II)(TPMA)X](+) cation, and were found to be isostructural with previously reported [Cu(II)(TPMA)X][X] (X = Cl(-) or Br(-)) complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号