首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The non-heteroatom-substituted manganese alkynyl carbene complexes (eta5-MeC5H4)(CO)2Mn=C(R)C[triple bond]CR'(3; 3a: R = R'= Ph, 3b: R = Ph, R'= Tol, 3c: R = Tol, R'= Ph) have been synthesised in high yields upon treatment of the corresponding carbyne complexes [eta5-MeC5H4)(CO)2Mn[triple bond]CR][BPh4]([2][BPh4]) with the appropriate alkynyllithium reagents LiC[triple bond]CR' (R'= Ph, Tol). The use of tetraphenylborate as counter anion associated with the cationic carbyne complexes has been decisive. The X-ray structures of (eta5-MeC5H4)(CO)2Mn=C(Tol)C[triple bond]CPh (3c), and its precursor [(eta5-MeC5H4)(CO)2Mn=CTol][BPh4]([2b](BPh4]) are reported. The reactivity of complexes toward phosphines has been investigated. In the presence of PPh3, complexes act as a Michael acceptor to afford the zwitterionic sigma-allenylphosphonium complexes (eta5-MeC5H4)(CO)2MnC(R)=C=C(PPh3)R' (5) resulting from nucleophilic attack by the phosphine on the remote alkynyl carbon atom. Complexes 5 exhibit a dynamic process in solution, which has been rationalized in terms of a fast [NMR time-scale] rotation of the allene substituents around the allene axis; metrical features within the X-ray structure of (eta5-MeC5H4)(CO)2MnC(Ph)=C=C(PPh3)Tol (5b) support the proposal. In the presence of PMe3, complexes undergo a nucleophilic attack on the carbene carbon atom to give zwitterionic sigma-propargylphosphonium complexes (eta5-MeC5H4)(CO)2MnC(R)(PMe3)C[triple bond]CR' (6). Complexes 6 readily isomerise in solution to give the sigma-allenylphosphonium complexes (eta5-MeC5H4)(CO)2MnC(R')=C=C(PMe3)R (7) through a 1,3 shift of the [(eta5-MeC5H4)(CO)2Mn] fragment. The nucleophilic attack of PPh2Me on 3 is not selective and leads to a mixture of the sigma-propargylphosphonium complexes (eta5-MeC5H4)(CO)2MnC(R)(PPh(2)Me)C[triple bond]CR' (9) and the sigma-allenylphosphonium complexes (eta5-MeC5H4)(CO)2MnC(R)=C=C(PPh(2)Me)R' (10). Like complexes 6, complexes 9 readily isomerize to give the sigma-allenylphosphonium complexes (eta5-MeC5H4)(CO)2MnC(R')=C=C(PPh2Me)R'). Upon gentle heating, complexes 7, and mixtures of 10 and 10' cyclise to give the sigma-dihydrophospholium complexes (eta5-MeC5H4)(CO)2MnC=C(R')PMe2CH2CH(R)(8), and mixtures of complexes (eta5-MeC5H4)(CO)2MnC=C(Ph)PPh2CH2CH(Tol)(11) and (eta5-MeC5H4)(CO)2MnC=C(Tol)PMe2CH2CH(Ph)(11'), respectively. The reactions of complexes 3 with secondary phosphines HPR(1)(2)(R1= Ph, Cy) give a mixture of the eta2-allene complexes (eta5-MeC5H4)(CO)2Mn[eta2-{R(1)(2)PC(R)=C=C(R')H}](12), and the regioisomeric eta4-vinylketene complexes [eta5-MeC5H4)(CO)Mn[eta4-{R(1)(2)PC(R)=CHC(R')=C=O}](13) and (eta5-MeC5H4)(CO)Mn[eta4-{R(1)(2)PC(R')=CHC(R)=C=O}](13'). The solid-state structure of (eta5-MeC5H4)(CO)2Mn[eta2-{Ph2PC(Ph)=C=C(Tol)H}](12b) and (eta5-MeC5H4)(CO)Mn[eta4-{Cy2PC(Ph)=CHC(Ph)=C=O}](13d) are reported. Finally, a mechanism that may account for the formation of the species 12, 13, and 13' is proposed.  相似文献   

2.
A family of novel titanasiloxanes containing the structural unit {[Ti(eta(5)-C(5)Me(5))O](3)} were synthesized by hydron-transfer processes involving reactions with equimolecular amounts of mu(3)-alkylidyne derivatives [{Ti(eta(5)-C(5)Me(5))(mu-O)}(3)(mu(3)-CR)] (R=H (1), Me (2)) and monosilanols, R(3)'Si(OH), silanediols, R(2)'Si(OH)(2), and the silanetriol tBuSi(OH)(3). Treatment of 1 and 2 with triorganosilanols (R'=Ph, iPr) in hexane affords the new metallasiloxane derivatives [{Ti(eta(5)-C(5)Me(5))(mu-O)}(3)(mu-CHR)(OSiR(3)')] (R=H, R'=Ph (3), iPr (4); R=Me, R'=Ph (5), iPr (6)). Analogous reactions with silanediols, (R'=Ph, iPr), give the cyclic titanasiloxanes [{Ti(eta(5)-C(5)Me(5))(mu-O)}(3)(mu-O(2)SiR'(2))(R)] (R=Me, R'=Ph (7), iPr (8); R=Et, R'=Ph (9), iPr (10)). Utilization of tBuSi(OH)(3) with 1 or 2 at room temperature produces the intermediate complexes [{Ti(eta(5)-C(5)Me(5)) (mu-O)}(3)(mu-O(2)Si(OH)tBu)(R)] (R=Me (11), Et(12)). Further heating of solutions of 11 or 12 affords the same compound with an adamantanoid structure, [{Ti(eta(5)-C(5)Me(5))(mu-O)}(3)(mu-O(3)SitBu)] (13) and methane or ethane elimination, respectively. The X-ray crystal structures of 3, 4, 6, 8, 10, 12, and 13 have been determined. To gain an insight into the mechanism of these reactions, DFT calculations have been performed on the incorporation of monosilanols to the model complex [{Ti(eta(5)-C(5)H(5))(mu-O)}(3)(mu(3)-CMe)] (2 H). The proposed mechanism consists of three steps: 1) hydron transfer from the silanol to one of the oxygen atoms of the Ti(3)O(3) ring, forming a titanasiloxane; 2) intramolecular hydron migration to the alkylidyne moiety; and 3) a mu-alkylidene ligand rotation to give the final product.  相似文献   

3.
Wang H  Wang Y  Chan HS  Xie Z 《Inorganic chemistry》2006,45(14):5675-5683
Reaction of [eta:(5)sigma-Me2C(C5H4)(C2B10H10)]TiCl(NMe2) (1) with 1 equiv of PhCH2K, MeMgBr, or Me3SiCH2Li gave corresponding organotitanium alkyl complexes [eta:(5)sigma-Me2C(C5H4)(C2B10H10)]Ti(R)(NMe2) (R = CH2Ph (2), CH2SiMe3 (4), or Me (5)) in good yields. Treatment of 1 with 1 equiv of n-BuLi afforded the decomposition product {[eta:(5)sigma-Me2C(C5H4)(C2B10H10)]Ti}2(mu-NMe)(mu:sigma-CH2NMe) (3). Complex 5 slowly decomposed to generate a mixed-valence dinuclear species {[eta:(5)sigma-Me2C(C5H4)(C2B10H10)]Ti}2(mu-NMe2)(mu:sigma-CH2NMe) (6). Complex 1 reacted with 1 equiv of PhNCO or 2,6-Me2C6H3NC to afford the corresponding monoinsertion product [eta:(5)sigma-Me2C(C5H4)(C2B10H10)]Ti(Cl)[eta(2)-OC(NMe2)NPh] (7) or [eta:(5)sigma-Me2C(C5H4)(C2B10H10)]Ti(Cl)[eta(2)-C(NMe2)=N(2,6-Me2C6H3)] (8). Reaction of 4 or 5 with 1 equiv of R'NC gave the titanium eta(2)-iminoacyl complexes [eta:(5)sigma-Me2C(C5H4)(C2B10H10)]Ti(NMe2)[eta(2)-C(R)=N(R')] (R = CH2SiMe3, R' = 2,6-Me2C6H3 (9) or tBu (10); R = Me, R' = 2,6-Me2C6H3 (11) or tBu (12)). The results indicated that the unsaturated molecules inserted into the Ti-N bond only in the absence of the Ti-C(alkyl) bond and that the Ti-C(cage) bond remained intact. All complexes were fully characterized by various spectroscopic techniques and elemental analyses. Molecular structures of 2, 3, 6-8, and 10-12 were further confirmed by single-crystal X-ray analyses.  相似文献   

4.
The nucleophilic addition of amidoximes R'C(NH(2))═NOH [R' = Me (2.Me), Ph (2.Ph)] to coordinated nitriles in the platinum(II) complexes trans-[PtCl(2)(RCN)(2)] [R = Et (1t.Et), Ph (1t.Ph), NMe(2) (1t.NMe(2))] and cis-[PtCl(2)(RCN)(2)] [R = Et (1c.Et), Ph (1c.Ph), NMe(2) (1c.NMe(2))] proceeds in a 1:1 molar ratio and leads to the monoaddition products trans-[PtCl(RCN){HN═C(R)ONC(R')NH(2)}]Cl [R = NMe(2); R' = Me ([3a]Cl), Ph ([3b]Cl)], cis-[PtCl(2){HN═C(R)ONC(R')NH(2)}] [R = NMe(2); R' = Me (4a), Ph (4b)], and trans/cis-[PtCl(2)(RCN){HN═C(R)ONC(R')NH(2)}] [R = Et; R' = Me (5a, 6a), Ph (5b, 6b); R = Ph; R' = Me (5c, 6c), Ph (5d, 6d), correspondingly]. If the nucleophilic addition proceeds in a 2:1 molar ratio, the reaction gives the bisaddition species trans/cis-[Pt{HN═C(R)ONC(R')NH(2)}(2)]Cl(2) [R = NMe(2); R' = Me ([7a]Cl(2), [8a]Cl(2)), Ph ([7b]Cl(2), [8b]Cl(2))] and trans/cis-[PtCl(2){HN═C(R)ONC(R')NH(2)}(2)] [R = Et; R' = Me (10a), Ph (9b, 10b); R = Ph; R' = Me (9c, 10c), Ph (9d, 10d), respectively]. The reaction of 1 equiv of the corresponding amidoxime and each of [3a]Cl, [3b]Cl, 5b-5d, and 6a-6d leads to [7a]Cl(2), [7b]Cl(2), 9b-9d, and 10a-10d. Open-chain bisaddition species 9b-9d and 10a-10d were transformed to corresponding chelated bisaddition complexes [7d](2+)-[7f](2+) and [8c](2+)-[8f](2+) by the addition of 2 equiv AgNO(3). All of the complexes synthesized bear nitrogen-bound O-iminoacylated amidoxime groups. The obtained complexes were characterized by elemental analyses, high-resolution ESI-MS, IR, and (1)H NMR techniques, while 4a, 4b, 5b, 6d, [7b](Cl)(2), [7d](SO(3)CF(3))(2), [8b](Cl)(2), [8f](NO(3))(2), 9b, and 10b were also characterized by single-crystal X-ray diffraction.  相似文献   

5.
Addition of 2 equiv of lithium pyrrolide to Mo(NR)(CHCMe2R')(OTf)2(DME) (OTf = OSO2CF3; R = 2,6-i-Pr2C6H3, 1-adamantyl, or 2,6-Br2-4-MeC6H2; R' = Me or Ph) produces Mo(NR)(CHCMe2R')(NC4H4)2 complexes in good yield. All compounds can be recrystallized readily from toluene or mixtures of pentane and ether and are sensitive to air and moisture. An X-ray structure of a 2,6-diisopropylphenylimido species shows it to be an unsymmetric dimer, {Mo(NAr)(syn-CHCMe2Ph)(eta5-NC4H4)(eta1-NC4H4)}{Mo(NAr)(syn-CHCMe2Ph)(eta1-NC4H4)2}, in which the nitrogen in the eta5-pyrrolyl bound to one Mo behaves as a donor to the other Mo. All complexes are fluxional on the NMR time scale at room temperature, with one symmetric species being observed on the NMR time scale at 50 degrees C in toluene-d8. The dimers react with PMe3 (at Mo) or B(C6F5)3 (at a eta5-NC4H4 nitrogen) to give monomeric products in high yield. They also react rapidly with 2 equiv of monoalcohols (e.g., Me3COH or (CF3)2MeCOH) or 1 equiv of a biphenol or binaphthol to give 2 equiv of pyrrole and bisalkoxide or diolate complexes in approximately 100% yield.  相似文献   

6.
Reaction of TiCl(2)(Me(2)Calix) with 2 equiv of LiNHNRR' afforded the corresponding terminal hydrazido(2-) complexes Ti(NNRR')(Me(2)Calix) (R = Ph, R' = Ph (1) or Me; R = R' = Me (3)) which were all structurally characterized. The X-ray structure of Ph(2)NNH(2) is reported for comparison. Compound 1 was also prepared from Na(2)[Me(2)Calix] and Ti(NNPh(2))Cl(2)(py)(3). Reaction of ZrCl(2)(Me(2)Calix) with 2 equiv of LiNHNR(2) afforded only the bis(hydrazido(1-)) complexes Zr(NHNR(2))(2)(Me(2)Calix) (R = Ph or Me). Treatment of Ti(NNMe(2))(Me(2)Calix) (3) with MeI gave the zwitterionic hydrazidium species Ti(NNMe(3))(MeCalix) (6) via a net isomerization reaction which was found to be catalytic in MeI. The corresponding reaction of 3 with CD(3)I gave Ti(NNMe(2)CD(3))(MeCalix) (6-d(3)) with concomitant elimination of MeI. Reaction of 3 with 1 equiv of MeOTf gave [Ti(NNMe(3))(Me(2)Calix)][OTf] (7-OTf) which in turn reacted with (n)Bu(4)NI to form 6 and MeI. Addition of PhCHO to 3 gave the mu-oxo dimer [Ti(mu-O)(Me(2)Calix)](2) and benzaldehyde-dimethylhydrazone. Reaction of either 3 or 6 with (t)BuNCO gave the zwitterionic species Ti{(t)BuNC(NNMe(3))O}(MeCalix) (10) which has been crystallographically characterized. Compound 10 is the formal product of insertion of an isocyanate into the Ti=N(alpha) bond of a titanium hydrazide or hydrazidium species (Me(2)Calix or MeCalix = dianion or trianion of the di- or monomethyl ether of p-tert-butyl calix[4]arene, respectively).  相似文献   

7.
The photochemical treatment of mu(3)-alkylidyne complexes [[TiCp*(mu-O)](3)(mu(3)-CR)] (R=H (1), Me (2), Cp*=eta(5)-C(5)Me(5)) with the amines (2,6-Me(2)C(6)H(3))NH(2), Et(2)NH, and Ph(2)NH and the imine Ph(2)C=NH leads to the partial hydrogenation of the alkylidyne moiety that is supported on the organometallic oxide, [Ti(3)Cp*O(3)], and the formation of new oxoderivatives [[TiCp*(3)(mu-CHR)(R'NR")] (R"=2,6-Me(2)C(6)H(3), R'=H, R=H (3), Me (4); R'=R"=Et, R=H (5), Me (6); R'=R"=Ph, R=H (7), Me (8)) and [[TiCp*(mu-O)](3)(mu-CHR)(N=CPh(2))] (R=H (9), R=Me (10)), respectively. A sequential transfer hydrogenation process occurs when complex 1 is treated with tBuNH(2), which initially gives the mu-methylene [[TiCp*(mu-O)](3)(mu-CH(2))(HNtBu)] (11) complex and finally, the alkyl derivative [[TiCp*(mu-O)](3)(mu-NtBu)Me] (12). Furthermore, irradiation of solutions of the mu(3)-alkylidyne complexes 1 or 2 in the presence of diamines o-C(6)H(4)(NH(2))(2) and H(2)NCH(2)CH(2)NH(2) (en) affords [[TiCp*(mu-O)](3)(mu(3)-eta(2)-NC(6)H(4)NH)] (13) and [[TiCp*(mu-O)](3)(mu(3)-eta(2)-NC(2)H(4)NH)] (14) by either methane or ethane elimination, respectively. In the reaction of 1 with en, an intermediate complex [[TiCp*(mu-O)](3)(mu-CH(2))(NHCH(2)CH(2)NH(2))] (15) is detected by (1)H NMR spectroscopy. Thermal treatment of the complexes 4-10 quantitatively regenerates the starting mu(3)-alkylidyne compounds and the amine R'(2)NH or the imine Ph(2)C=NH; however, heating of solutions of 3 or 4 in [D(6)]benzene or a equimolecular mixture of both at 170 degrees C produces methane, ethane, or both, and the complex [[TiCp*(mu-O)](3)[mu(3)-eta(2)-NC(6)H(3)(Me)CH(2)]] (16). The molecular structure of 8 has been established by single-crystal X-ray analysis.  相似文献   

8.
Lithium aluminates Li[Al(O-2,6-Me(2)C(6)H(3))R'(3)] (R' = Et, Ph) react with the μ(3)-alkylidyne oxoderivative ligands [{Ti(η(5)-C(5)Me(5))(μ-O)}(3)(μ(3)-CR)] [R = H (1), Me (2)] to afford the aluminum-lithium-titanium cubane complexes [{R'(3)Al(μ-O-2,6-Me(2)C(6)H(3))Li}(μ(3)-O)(3){Ti(η(5)-C(5)Me(5))}(3)(μ(3)-CR)] [R = H, R' = Et (5), Ph (7); R = Me, R' = Et (6), Ph (8)]. Complex 7 evolves with the formation of a lithium dicubane species and a Li{Al(μ-O-2,6-Me(2)C(6)H(3))Ph(3)}(2)] unit.  相似文献   

9.
Synthesis of the title compounds, viz. [RN(CH2CHR'O)2]2Ge (1, R = Me, R' = H; 2, R = Me, R' = Ph; 3, R = Ph, R' = H), by the reaction of 2 equiv of corresponding dialkanolamines RN(CH2CHR'OH)2 (4, R = Me, R' = H; 5, R = Me, R' = Ph; 6, R = Ph, R' = H) with (AlkO)4Ge is reported. Composition and structures of all novel compounds were established by 1H and 13C NMR spectroscopy and mass spectrometry as well as elemental analysis data. The single-crystal X-ray diffraction of 2 has clearly indicated the presence of two transannular interactions Ge<--N in the compound. N atoms are cis-orientated. The compound 3 possesses long Ge...N distances. The structural data obtained from geometry optimizations by DFT calculations on 1-3 reproduces experimental results. Both cis- and trans-isomers were studied, and cis-configuration was found to be more thermodynamically stable for all three compounds. The transition states for possible cis <--> trans rearrangement processes in 1-3 were calculated. The properties of the Ge-O and Ge<--N bonds in 1-3 were analyzed by the AIM approach. The interactions between the Ge atom and N atoms as well as O atoms possess predominantly ionic character.  相似文献   

10.
Two different classes of silicone-modified ligands were prepared: nitrile derivatives, 4'-[3-(organosilyl)propoxy]biphenyl-4-carbonitrile R'3SiC3H6OC6H4C6H4CN (R'3Si- = a: Me3SiOSiMe2-, b: (Me(3)SiO)2SiMe-, c: Me3SiO(Me2SiO)3SiMe2-, d: Me3SiO(Me2SiO)25SiMe2-); and, pyridine derivatives, isonicotinic acid 2-methoxy-4-[3-(organosilyl)propyl]phenyl ester R'3SiC3H6Ph(O)MeOCOC5H4N . Compounds and were bound to Pd and Pt using ligand substitution reactions with organometallic precursors to give (R3SiC3H6OC6H4C6H4CN)2PdCl2, (R3SiC3H6OC6H4C6H4CN)2PtCl2 and (R3SiC3H6C6H3(OMe)OC(O)C5H4N)PtCl2(eta(2)-1-octene). The polydimethylsiloxane (PDMS)-supported Pt and Pd compounds and had excellent solubility in both organic solvents and polysiloxanes. All the Pt compounds exhibited good catalytic activity for hydrosilylation of vinylsilanes. The PDMS-supported Pd compound also was effective catalyst for hydrosilylation of a diene, isoprene, with 1,1,1,3,3-pentamethyldisiloxane MM(H) to produce the 1,4-adduct Me3SiOSiMe2CH2CH=CMeCH2-H as a major product.  相似文献   

11.
Dichloro and chloromethyl Ga(III) complexes of general formulae [XClGa-eta2-{R2P(E)NP(E'R'2-E,E'}](X = Cl, R, R'= Ph, E, E'= O (1), S (2), Se (3); R = Ph, R'= OEt, E = O, E'= S (4); R = Me, R'= Ph, E, E'= S (5) and X = Me, E, E'= O (6), S (7), Se (8)) were synthesised by either metathesis reactions between GaCl3 and the potassium salt of the ligand (X = Cl) or by methane eliminations from in situ prepared GaMe2Cl and the protonated ligands LH (X = Me). Redistribution reaction of (3) in either CDCl3 or THF afforded the solvent-free tetracoordinate gallium spirocycle cation [Ga-{eta2-{Ph2P(Se)NP(Se)Ph2-Se,Se'})2]+ (9+). The molecular structures of complexes 2, 4, 5, 7 and 9(+) show non-planar gallacycle rings.  相似文献   

12.
In combination with EtAlCl(2) (Mo : Al = 1 : 15) the imido complexes [MoCl(2)(NR)(NR')(dme)] (R = R' = 2,6-Pr(i)(2)-C(6)H(3) (1); R = 2,6-Pr(i)(2)-C(6)H(3), R' = Bu(t) (3); R = R' = Bu(t) (4); dme = 1,2-dimethoxyethane) and [Mo(NHBu(t))(2)(NR)(2)] (R = 2,6-Pr(i)(2)-C(6)H(3) (5); R = Bu(t) (6)) each show moderate TON, activity, and selectivity for the catalytic dimerisation of ethylene, which is influenced by the nature of the imido substituents. In contrast, the productivity of [MoCl(2)(NPh)(2)(dme)] (2) is low and polymerisation is favoured over dimerisation. Catalysis initiated by complexes 1-4 in combination with MeAlCl(2) (Mo : Al = 1 : 15) exhibits a significantly lower productivity. Reaction of complex 5 with EtAlCl(2) (2 equiv.) gives rise to a mixture of products, while addition of MeAlCl(2) affords [MoMe(2)(N-2,6-Pr(i)(2)-C(6)H(3))(2)]. Treatment of 6 with RAlCl(2) (2 equiv.) (R = Me, Et) yields [Mo({μ-N-Bu(t)}AlCl(2))(2)] (7) in both cases. Imido derivatives 1 and 3 react with Me(3)Al and MeAlCl(2) to form the bimetallic complexes [MoMe(2)(N{R}AlMe(2){μ-Cl})(NR')] (R = R' = 2,6-Pr(i)(2)-C(6)H(3) (8); R = 2,6-Pr(i)(2)-C(6)H(3), R' = Bu(t) (10)) and [MoMe(2)(N{R}AlCl(2){μ-Cl})(NR')] (R = R' = 2,6-Pr(i)(2)-C(6)H(3) (9); R = 2,6-Pr(i)(2)-C(6)H(3), R' = Bu(t) (11)), respectively. Exposure of complex 8 to five equivalents of thf or PMe(3) affords the adducts [MoMe(2)(N-2,6-Pr(i)(2)-C(6)H(3))(2)(L)] (L = thf (12); L = PMe(3) (13)), while reaction with NEt(3) (5 equiv.) yields [MoMe(2)(N-2,6-Pr(i)(2)-C(6)H(3))(2)]. The molecular structures of complexes 5, 9 and 11 have been determined.  相似文献   

13.
A series of new (silylamino)phosphines that contain sterically bulky silyl groups on nitrogen were prepared by deprotonation/substitution reactions of the hindered disilylamines t-BuR(2)Si(Me(3)Si)NH (1, R = Me; 2, R = Ph) and (Et(3)Si)(2)NH (3). Sequential treatment of the N-lithio derivatives of 1-3 with PCl(3) or PhPCl(2) and MeLi gave the corresponding (silylamino)phosphines t-BuR(2)Si(Me(3)Si)NP(R')Me (5, R = Me, R' = Ph; 6, R = Ph, R' = Me) and (Et(3)Si)(2)NP(R)Me (11, R = Me; 12, R = Ph) in high yields. Two of the P-chloro intermediates t-BuR(2)Si(Me(3)Si)NP(Ph)Cl (7, R = Ph; 9, R = Me) were also isolated and fully characterized. Hydrolysis of 7 afforded the crystalline PH-substituted aminophosphine oxide t-BuPh(2)SiN(H)P(Ph)(=O)H (10). Thermal decomposition of 7 occurred with elimination of Me(3)SiCl and formation of a novel P(2)N(2) four-membered ring system (36) that contains both P(III) and P(V) centers. Reactions of the N-lithio derivatives of amines 1 and 2 with phosphorus trihalides afforded the thermally stable -PF(2) derivatives t-BuR(2)Si(Me(3)Si)NPF(2) (13, R = Me; 14, R = Ph) and the unstable -PCl(2) analogue 17 (R = Ph). Reduction (using LiAlH(4)) of the SiPh-substituted dihalophosphines 14 and 17 gave the unstable parent phosphine t-BuPh(2)Si(Me(3)Si)NPH(2) (15). The P-organo-substituted (silylamino)phosphines underwent oxidative bromination to afford high yields of the corresponding N-silyl-P-bromophosphoranimines t-BuR(2)SiN=P(R')(Me)Br (18, R = R' = Me; 19, R = Me, R' = Ph; 20, R = Ph, R' = Me) and Et(3)SiN=P(R)(Me)Br (23, R = Me; 24, R = Ph). Subsequent treatment of these reactive PBr compounds with lithium trifluoroethoxide or phenoxide produced the corresponding PO derivatives t-BuR(2)SiN=P(R')(Me)OR' ' (25 and 26, R' ' = CH(2)CF(3); 28-30, R' ' = Ph) and Et(3)SiN=P(R)(Me)OR' (31 and 33, R' = CH(2)CF(3); 32 and 34, R = Ph), respectively. Many of the new compounds containing the bulky tert-butyldiphenylsilyl group, t-BuPh(2)Si, were solids that gave crystals suitable for X-ray diffraction studies. Consequently, the crystal structures of three (silylamino)phosphines (6, 7, and 14), one (silylamino)phosphine oxide (10), one N-silylphosphoranimine (30), and the cyclic compound 36 were determined. Among the (silylamino)phosphines, the P-N bond distances [6, N-PMe(2), 1.725(3) A; 7, N-P(Ph)Cl, 1.68(1) A, 14, N-PF(2), 1.652(4) A] decreased significantly as the electron-withdrawing nature of the phosphorus substituents increased. The N-silylphosphoranimine t-BuPh(2)SiN=PMe(2)OPh (30), which is a model system for poly(phosphazene) precursors, had a much shorter P=N distance of 1.512(6) A and a wide Si-N-P bond angle of 166.4(3) degrees. A similar P=N bond distance [1.514(7) A] and Si-N-P angle [169.9(6) degrees ] were observed for the exocyclic P=N-Si linkage in the ring compound 36, while the phosphine oxide 10 had P-N and P=O distances of 1.637(4) and 1.496(3) A, respectively, and a Si-N-P angle of 134.3(2) degrees.  相似文献   

14.
Reaction of Me(3)Al (one equivalent) with the bis(imino)phenol, [2,6-(ArNCH)(2)-4-MeC(6)H(2)OH] (I)(Ar = 2,6-Pr(i)(2)C(6)H(3)) in toluene at ambient temperature yields the yellow complex [Me(2)Al[2,6-(ArNCH)(2)-4-MeC(6)H(2)O]](1). Interaction of two equivalents of Me(3)Al in refluxing toluene affords the red complex [(Me(2)Al)(2)[2-ArNCH(Me)-6-(ArNCH)-4-MeC(6)H(2)O]](2). Similar interaction (two equivalents, refluxing toluene) of MeAlCl(2) or (i)Bu(3)Al with [2,6-(ArNCH)(2)-4-MeC(6)H(2)OH] affords [ClAl[2,6-(ArNCH)(2)-4-MeC(6)H(2)O](2)](3) or [(i)Bu(2)Al[2,6-(ArNCH)(2)-4-MeC(6)H(2)O]](4), respectively. Hydrolysis of 2 readily affords the iminoaminophenol ligand [2-(ArN=CH)-6-ArNHCH(Me)-4-MeC(6)H(2)OH](II), which reacts further with Me(3)Al to afford [Me(2)Al[2-ArNCH(Me)-6-(ArNCH)-4-MeC(6)H(2)O]](5). An X-ray study on reveals bidentate imino-alkoxide ligation about the distorted aluminium centre, whereas is a binuclear structure with tetrahedral aluminiums ligated by imino-alkoxide and amido-alkoxide ligand fragments, respectively. For and bidentate imino-alkoxide ligation is observed.  相似文献   

15.
Interaction of cis,trans,cis-[Rh(H)2(PR3)2(acetone)2]PF6 complexes (R = aryl or R3 = Ph2Me, Ph2Et) under H2 with E-semicarbazones gives the Rh(III)-dihydrido-bis(phosphine)-semicarbazone species cis,trans-[Rh(H)2(PR3)2{R'(R' ')C=N-N(H)CONH2}]PF6, where R' and R' ' are Ph, Et, or Me. The complexes are generally characterized by elemental analysis, 31P{1H} NMR, 1H NMR, and IR spectroscopies, and MS. X-ray analysis of three PPh3 complexes reveals chelation of E-semicarbazones by the imine-N atom and the carbonyl-O atom. In contrast, the corresponding reaction of [Rh(H)2(PPhMe2)2(acetone)2]PF6 with acetophenone semicarbazone gives the ortho-metalated-semicarbazone species cis-[RhH(PPhMe2)2{o-C6H4(Me)C=N-N(H)CONH2}]PF6. The X-ray structure of E-propiophenone semicarbazone is also reported. Rhodium-catalyzed, homogeneous hydrogenation of semicarbazones was not observed even at 40 atm H2.  相似文献   

16.
Reactions of Ph(3)SnOH or Ph3SnCl with aryl arsonic acids RAsO3H2, where R=C6H5 (1), 2-NH2C6H4 (2), 4-NH2C6H4 (3), 2-NO2C6H4 (4), 3-NO2C6H4 (5), 4-NO2C6H4 (6), 3-NO2-4-OHC6H3 (7), 2-ClC6H4 (8) and 2,4-Cl2C6H3 (9), gave 18 Sn-O cluster compounds. These compounds can be classified into four types: type A: [{(PhSn)3(RAsO3)3(mu3-O)(OH)(R'O)2}2Sn] (R=C6H5, 2-NH2C6H4, 4-NH2C6H4, 2-NO2C6H4, 3-NO2C6H4, 2-ClC6H4, 2,4-Cl2C6H3, and 3-NO2-4-OHC6H3; R'=Me or Et); type B: [{(PhSn)3(RAsO3)(2)(RAsO3H)(mu3-O)(R'O)2}2] (R=4-NO2C6H4, R'=Me); type C: [{(PhSn)3(RAsO3)3(mu3-O)(R'O)3}2Sn] (R=2,4-Cl2C6H3, R'=Me); type D: [{Sn3Cl3(mu3-O)(R'O)3}(2)(RAsO3)4] (R=2-NO2C6H4 and 4-NO2-C6H4; R'=Me or Et). Structures of types A and B contain [Sn3(mu3-O)(mu2-OR')2] building blocks, while in types C and D the stannoxane cores are built from two [Sn3(mu3-O)(mu2-OR')3] building blocks. The reactions proceeded with partial or complete dearylation of the triphenyltin precursor. These various structural forms are realized by subtle changes in the nature of the organotin precursors and aryl arsonic acids. The syntheses, structures, and structural interrelationship of these organostannoxanes are discussed.  相似文献   

17.
The metal halides of Group 5 MX(5) (M = Nb, Ta; X = F, Cl, Br) react with ketones and acetylacetones affording the octahedral complexes [MX(5)(ketone)] () and [TaX(4){kappa(2)(O)-OC(Me)C(R)C(Me)O}] (R = H, Me, ), respectively. The adducts [MX(5)(acetone)] are still reactive towards acetone, acetophenone or benzophenone, giving the aldolate species [MX(4){kappa(2)(O)-OC(Me)CH(2)C(R)(R')O}] (). The syntheses of (M = Ta, X = F, R = R' = Ph) and (M = Ta, X = Cl, R = Me, R' = Ph) take place with concomitant formation of [(Ph(2)CO)(2)-H][TaF(6)], and [(MePhCO)(2)-H][TaCl(6)], respectively. The compounds [acacH(2)][TaF(6)], and [TaF{OC(Me)C(Me)C(Me)O}(3)][TaF(6)], have been isolated as by-products in the reactions of TaF(5) with acacH and 3-methyl-2,4-pentanedione, respectively. The molecular structures of, and have been ascertained by single crystal X-ray diffraction studies.  相似文献   

18.
Several compounds based on the C(1)-symmetric ligands [N(R)C(Ar)NPh]- [abbreviated as B1 (Ar = C(6)H(4)Me-4) or B2 (Ar = Ph), R = SiMe(3)] are reported. They are the crystalline metal benzamidinates [Li(mu:kappa2-B1)(OEt2)](2) (1), [Al(kappa2-B1)2Me] (2), [Al(kappa2-B1)2X] [X = Cl/Me, 1 : 1 (3)], [Sn(kappa2-B1)2] (4), Zr(kappa2-B1)2Cl2 (5), [Zr(kappa2-B1)3Cl] (6), [Na(mu:kappa2-B1)(tmeda)]2 (7), K[B1] (8), Li(B2)(OEt2) (9) and Zr(kappa2-B1)3Cl (10) and the known benzamidine Z-H2NC(C6H4Me-4) = NPh (11). They were prepared by (i) insertion of the nitrile 4-MeC6H4CN (1, 7, 8, 11) or PhCN (9) into the appropriate M-N(R')Ph [R' = R and M = Li (1, 9), Na (7), K (8)] bond and subsequent hydrolysis for 11 [R' = H and M = Li], or (ii) a ligand transfer reaction using the lithium amidinate 1 and Al(Me)2Cl (2, 3), SnCl2 (4) or ZrCl4 (5, 6), or Li(B2) and ZrCl4 (10). The X-ray structures of 1, 2, 3, 4, 6b (i.e..3PhMe) 7, and 11 are presented. Exploratory polymerisation experiments are described, using 2, 5 or 6 as a procatalyst with methylaluminoxane (MAO) (Al : Zr ca. 500 : 1) as promoter. Thus toluene solutions were exposed to C2H4 under ambient conditions; while 2 was unresponsive, 5 and 6 showed modest activity in the formation of polyethylene.  相似文献   

19.
The 3,5-di-tert-butylpyrazolato (3,5-tBu(2)pz) derivatives of aluminum [(eta(1),eta(1)-3,5-tBu(2)pz)(mu-Al)R(1)R(2)](2) (R(1) = R(2) = Me 1; R(1) = R(2) = Et, 2; R(1) = R(2) = Cl, 3; R(1) = R(2) = I, 4; [(eta(2)-3,5-tBu(2)pz)(3)Al], 5; [Al(2)(eta(1),eta(1)-3,5-tBu(2)pz)(2)(mu-E)(C triple bond CPh)(2)] (E = S (6), Se (7), Te (8)) have been prepared in good yield. Compounds 1 and 2 were obtained by the reactions of H[3,5-tBu(2)pz] with Me(3)Al and Et(3)Al, respectively. Reaction of [(eta(1),eta(1)-3,5-tBu(2)pz)(mu-Al)H(2)](2) with the pyrazole H[3,5-tBu(2)pz] gave [(eta(2)-3,5-tBu(2)pz)(3)Al] (5). The reaction of [(eta(1),eta(1)-3,5-tBu(2)pz)(mu-Al)R(2)](2) (R = H, Me) and I(2) yielded 4, while the reaction of 1 equiv of K[3,5-tBu(2)pz] and AlCl(3) afforded 3. In addition, the reaction of [Al(2)(eta(1),eta(1)-3,5-tBu(2)pz)(2)(mu-E)H(2)] and HC triple bond CPh gave 6, 7, and 8. All compounds have been characterized by elemental analysis, NMR, and mass spectroscopy. The molecular structure analyses of compounds 1, 3, 6, and 7 by X-ray crystallography showed that complexes 1 and 3 are dimeric with two eta(1),eta(1)-pyrazolato groups in twisted conformation while 6 and 7 with two eta(1),eta(1)-pyrazolato groups display a boat conformation.  相似文献   

20.
Achiral and chiral linear trisphenol analogues of calixarene (HOArCH(2)Ar'(OH)C(R)HArOH, Ar = 4,6-di-tert-butylphenyl; Ar' = 4-tert-butylphenyl; R = H (achiral), Me (chiral)) were prepared in anticipation of their adoption of a chiral conformation upon coordination to Lewis acidic metal centers. The trisphenols react with 1 equiv of Ti(OR')(4) (R' = i-Pr or t-Bu) to yield complexes with molecular formula Ti(2)(OArCH(2)Ar'(O)C(R)HArO)(2)(OR')(2) (R = H, Me; R' = i-Pr or t-Bu). An X-ray crystal structure of the titanium complex of the achiral trisphenol (R = H; R' = t-Bu) reveals that the trisphenolate ligand adopts an unsymmetrical (and therefore chiral) conformation, with eta(2)-coordination to one metal center and eta(1)-coordination to the second metal center. The chiral trisphenol, which contains a stereogenic center (indicated as C in the shorthand notation used above), coordinates titanium in an analogous fashion to produce only one diastereomer (out of four possible); therefore, the configuration of the stereogenic center controls the conformation adopted by the bound ligand. The reaction of achiral trisphenol with AlMe(3) produces a compound with molecular formula Al(2)(OArCH(2)Ar'(O)CH(2)ArO)(2). (1)H NMR spectroscopy and X-ray crystallography reveal that the trisphenolate ligand adopts an asymmetric, C(2) conformation in this complex, where the central phenolate oxygen bridges the aluminum centers and the terminal phenolate oxygens each coordinate a separate aluminum center. Because these trisphenolate ligands adopt chiral conformations when coordinated to metal centers, they may be useful for developing diastereo- or enantioselective catalysts and reagents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号