首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The photooxidation of toluene is a potential source of secondary organic aerosol (SOA) in urban air, but only a small portion of the compounds present in SOA have been identified. In this study, we analyzed the chemical compositions of SOA produced by photoirradiation of the toluene/NOx/air system in laboratory chamber experiments by a combination of liquid chromatography-mass spectrometry, hybrid high-performance liquid chromatography-mass spectrometry, and iodometry-spectrophotometry. The dependence of the chemical composition on the initial NOx concentration was examined at initial NO concentrations ([NO]0) of 0.2 and 1 ppmv. Fifteen semivolatile products, including aromatic and ring-cleavage compounds, were quantified. However, the quantified products comprised only a small portion ( approximately 1 wt %) of the total aerosol mass. The total SOA yield ( approximately 13 wt %), the ratio of organic peroxides to total SOA mass ( approximately 17 wt %), and the density of SOA ( approximately 1.4 g cm-3) were independent of the NOx level, suggesting that the reaction mechanisms of the formation of major SOA products at [NO]0 = 0.2 and 1 ppmv are essentially the same. The negative-ion mass spectra of SOA samples showed that ion signals attributed to hemiacetal oligomers and/or decomposition products of peroxy hemiacetal oligomers were detected in the range of mass-to-charge ratios (m/z) between 200 and 500. The highest signals were detected at m/z = 155 and 177, and these were tentatively assigned to C7 unsaturated oxacyclic oxocarboxylic acids and C7 unsaturated oxacyclic dicarboxylic acids, respectively. We conclude that the major chemical components of the aerosol are hemiacetal and peroxy hemiacetal oligomers and low-molecular-weight dicarboxylic acids.  相似文献   

2.
Secondary organic aerosol (SOA) is formed in the atmosphere when volatile organic compounds (VOCs) emitted from anthropogenic and biogenic sources are oxidized by reactions with OH radicals, O(3), NO(3) radicals, or Cl atoms to form less volatile products that subsequently partition into aerosol particles. Once in particles, these organic compounds can undergo heterogenous/multiphase reactions to form more highly oxidized or oligomeric products. SOA comprises a large fraction of atmospheric aerosol mass and can have significant effects on atmospheric chemistry, visibility, human health, and climate. Previous articles have reviewed the kinetics, products, and mechanisms of atmospheric VOC reactions and the general chemistry and physics involved in SOA formation. In this article we present a detailed review of VOC and heterogeneous/multiphase chemistry as they apply to SOA formation, with a focus on the effects of VOC molecular structure on the kinetics of initial reactions with the major atmospheric oxidants, the subsequent reactions of alkyl, alkyl peroxy, and alkoxy radical intermediates, and the composition of the resulting products. Structural features of reactants and products discussed include compound carbon number; linear, branched, and cyclic configurations; the presence of C[double bond, length as m-dash]C bonds and aromatic rings; and functional groups such as carbonyl, hydroxyl, ester, hydroxperoxy, carboxyl, peroxycarboxyl, nitrate, and peroxynitrate. The intention of this review is to provide atmospheric chemists with sufficient information to understand the dominant pathways by which the major classes of atmospheric VOCs react to form SOA products, and the further reactions of these products in particles. This will allow reasonable predictions to be made, based on molecular structure, about the kinetics, products, and mechanisms of VOC and heterogeneous/multiphase reactions, including the effects of important variables such as VOC, oxidant, and NO(x) concentrations as well as temperature, humidity, and particle acidity. Such knowledge should be useful for interpreting the results of laboratory and field studies and for developing atmospheric chemistry models. A number of recommendations for future research are also presented.  相似文献   

3.
Limona ketone was synthesized to explore the secondary organic aerosol (SOA) formation mechanism from limonene ozonolysis and also to test group-additivity concepts describing the volatility distribution of ozonolysis products from similar precursors. Limona ketone SOA production is indistinguishable from alpha-pinene, confirming the expected similarity. However, limona ketone SOA production is significantly less intense than limonene SOA production. The very low vapor pressure of limonene ozonolysis products is consistent with full oxidation of both double bonds in limonene and furthermore with production of products other than ketones after oxidation of the exo double bond in limonene. Mass-balance constraints confirm that ketone products from exo double-bond ozonolysis have a minimal contribution to the ultimate product yield. These results serve as the foundation for an emerging framework to describe the effect on volatility of successive generations of organic compounds in the atmosphere.  相似文献   

4.
The heterogeneous reaction of liquid oleic acid aerosol particles with NO3 radicals in the presence of NO2, N2O5, and O2 was investigated in an environmental chamber using a combination of on-line and off-line mass spectrometric techniques. The results indicate that the major reaction products, which are all carboxylic acids, consist of hydroxy nitrates, carbonyl nitrates, dinitrates, hydroxydinitrates, and possibly more highly nitrated products. The key intermediate in the reaction is the nitrooxyalkylperoxy radical, which is formed by the addition of NO3 to the carbon-carbon double bond and subsequent addition of O2. The nitrooxyalkylperoxy radicals undergo self-reactions to form hydroxy nitrates and carbonyl nitrates, and may also react with NO2 to form nitrooxy peroxynitrates. The latter compounds are unstable and decompose to carbonyl nitrates and dinitrates. It is noteworthy that in this reaction nitrooxyalkoxy radicals appear not to be formed, as indicated by the absence of the expected products of decomposition or isomerization of these species. This is different from gas-phase alkene-NO3 reactions, in which a large fraction of the products are formed through these pathways. The results may indicate that, for liquid organic aerosol particles in low NOx environments, the major products of the radical-initiated oxidation (including by OH radicals) of unsaturated and saturated organic compounds will be substituted forms of the parent compound rather than smaller decomposition products. These compounds will remain in the particle and can potentially enhance particle hygroscopicity and the ability of particles to act as cloud condensation nuclei.  相似文献   

5.
The effect of UV irradiation on the molecular composition of aqueous extracts of secondary organic aerosol (SOA) was investigated. SOA was prepared by the dark reaction of ozone and d-limonene at 0.05-1 ppm precursor concentrations and collected with a particle-into-liquid sampler (PILS). The PILS extracts were photolyzed by 300-400 nm radiation for up to 24 h. Water-soluble SOA constituents were analyzed using high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) at different stages of photolysis for all SOA precursor concentrations. Exposure to UV radiation increased the average O/C ratio and decreased the average double bond equivalent (DBE) of the dissolved SOA compounds. Oligomeric compounds were significantly decreased by photolysis relative to the monomeric compounds. Direct pH measurements showed that acidic compounds increased in abundance upon photolysis. Methanol reactivity analysis revealed significant photodissociation of molecules containing carbonyl groups and the formation of carboxylic acids. Aldehydes, such as limononaldehyde, were almost completely removed. The removal of carbonyls was further confirmed by the UV/Vis absorption spectroscopy of the SOA extracts where the absorbance in the carbonyl n→π* band decreased significantly upon photolysis. The effective quantum yield (the number of carbonyls destroyed per photon absorbed) was estimated as ~0.03. The total concentration of peroxides did not change significantly during photolysis as quantified with an iodometric test. Although organic peroxides were photolyzed, the likely end products of photolysis were smaller peroxides, including hydrogen peroxide, resulting in a no net change in the peroxide content. Photolysis of dry limonene SOA deposited on substrates was investigated in a separate set of experiments. The observed effects on the average O/C and DBE were similar to the aqueous photolysis, but the extent of chemical change was smaller in dry SOA. Our results suggest that biogenic SOA dissolved in cloud and fog droplets will undergo significant photolytic processing on a time scale of hours to days. This type of photolytic processing may account for the discrepancy between the higher values of O/C measured in the field experiments relative to the laboratory measurements on SOA in smog chambers. In addition, the direct photolysis of oligomeric compounds may be responsible for the scarcity of their observation in the field.  相似文献   

6.
An extensive mechanism for the OH-initiated oxidation of β-pinene up to the first-generation products was derived based on quantum chemical calculations, theoretical kinetics, and structure-activity relationships. The resulting mechanism deviates from earlier explicit mechanisms in several key areas, leading to a different product yield prediction. Under oxidative conditions, the inclusion of ring closure reactions of unsaturated alkoxy radicals brings the predicted nopinone and acetone yields to an agreement with the experimental data. Routes to the formation of other observed products, either speciated or observed as peaks in mass spectrometric studies, are also discussed. In pristine conditions, we predict significant acetone formation following ring closure reactions in alkylperoxy radicals; in addition, we predict some direct OH recycling in subsequent H-migration reactions in alkylperoxy radicals. The uncertainties on the key reactions are discussed. Overall, the OH-initiated oxidation of β-pinene is characterized by the formation of a few main products, and a very large number of products in minor to very small yields.  相似文献   

7.
Off-site detection of the hydrolysed products of sulfur mustards in aqueous samples is an important task in the verification of Chemical Weapons Convention (CWC)-related chemicals. The hydrolysed products of sulfur mustards are studied under positive and negative electrospray ionisation (ESI) conditions using an additive with a view to detecting them at trace levels. In the presence of cations (Li(+), Na(+), K(+) and NH(4) (+)), the positive ion ESI mass spectra of all the compounds include the corresponding cationised species; however, only the [M+NH(4)](+) ions form [M+H](+) ions upon decomposition. The tandem mass (MS/MS) spectra of [M+H](+) ions from all the hydrolysed products of the sulfur mustard homologues were distinct and allowed these compounds to be characterised unambiguously. Similarly, the negative ion ESI mass spectra of all the compounds show prominent adducts with added anions (F(-), Cl(-), Br(-), and I(-)), but the [M-H](-) ion can only be generated by decomposition of an [M+F](-) ion. The MS/MS spectra of the [M-H](-) ions from all the compounds result in a common product ion at m/z 77. A precursor ion scan of m/z 77 is shown to be useful in the rapid screening of these compounds in aqueous samples at trace levels, even in the presence of complex masking agents, without the use of time-consuming sample preparation and chromatography steps. An MS/MS method developed to measure the detection limits of the hydrolysed products of sulfur mustards found these to be in the range of 10-500 ppb.  相似文献   

8.
Secondary organic aerosol (SOA) formation from reactions of linear alkenes with NO(3) radicals was investigated in an environmental chamber using a thermal desorption particle beam mass spectrometer for particle analysis. A general chemical mechanism was developed to explain the formation of the observed SOA products. The major first-generation SOA products were hydroxynitrates, carbonylnitrates, nitrooxy peroxynitrates, dihydroxynitrates, and dihydroxy peroxynitrates. The major second-generation SOA products were hydroxy and oxo dinitrooxytetrahydrofurans, which have not been observed previously. The latter compounds were formed by a series of reactions in which delta-hydroxycarbonyls isomerize to cyclic hemiacetals, which then dehydrate to form substituted dihydrofurans (unsaturated compounds) that rapidly react with NO(3) radicals to form very low volatility products. For the approximately 1 ppmv alkene concentrations used here, aerosol formed only for alkenes C(7) or larger. SOA formed from C(7)-C(9) alkenes consisted only of second-generation products, whereas for larger alkenes first-generation products were also present and contributions increased with increasing carbon number apparently due to the formation of lower volatility products. The estimated mass fractions of first- and second-generation products were approximately 50:50, 30:70, 10:90, and 0:100, for 1-tetradecene, 1-dodecene, 1-decene, and 1-octene SOA, respectively. This study shows that delta-hydroxycarbonyls play a key role in the formation of SOA in alkene-NO(3) reactions and are likely to be important in other systems because delta-hydroxycarbonyls can also be formed from reactions of OH radicals and O(3) with hydrocarbons.  相似文献   

9.
Linoleic acid radical products formed by radical reaction (Fenton conditions) were trapped using 5,5-dimethyl-1-pyrrolidine-N-oxide (DMPO) and analysed by reversed-phase liquid chromatography coupled to electrospray mass spectrometry (LC-MS). The linoleic acid radical species detected as DMPO spin adducts comprised oxidized linoleic acid and short-chain radical species that resulted from the breakdown of carbon and oxygen centred radicals. Based on the m/z values, the short-chain products were identified as alkyl and carboxylic acid DMPO radical adducts that exhibited different elution times. The ions identified as DMPO radical adducts were studied by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The LC-MS/MS spectra of linoleic acid DMPO radical adducts exhibited the fragment ion at m/z 114 and/or the loss of neutral molecule of 113 Da (DMPO) or 131 Da (DMPO + H2O), indicated to be DMPO adducts. The short-chain products identified allowed inference of the radical oxidation along the linoleic acid chain by abstraction of hydrogen atoms in carbon atoms ranging from C-8 to C-14. Other ions containing the fragment ion at m/z 114 in the LC-MS/MS spectra were attributed to DMPO adducts of unsaturated aldehydes, hydroxy-aldehydes and oxocarboxylic acids. The identification of aldehydic products formed by radical oxidation of linoleic acid peroxidation products, as short-chain product DMPO adducts, is a means of identifying lipid peroxidation products.  相似文献   

10.
The photodegradation of secondary organic aerosol (SOA) material by actinic UV radiation was investigated. SOA was generated via the dark reaction of ozone and d-limonene, collected onto quartz-fiber filters, and exposed to wavelength-tunable radiation. Photochemical production of CO was monitored in situ by infrared cavity ring-down spectroscopy. A number of additional gas-phase products of SOA photodegradation were observed by gas chromatography, including methane, ethene, acetaldehyde, acetone, methanol, and 1-butene. The absorption spectrum of SOA material collected onto CaF2 windows was measured and compared with the photolysis action spectrum for the release of CO, a marker for Norrish type-I photocleavage of carbonyls. Both spectra had a band at approximately 300 nm corresponding to the overlapping n --> pi* transitions in nonconjugated carbonyls. The effective extinction coefficient of freshly prepared SOA was estimated to be on the order of 15 L mol(-1) cm(-1) at 300 nm, implying one carbonyl group in every SOA constituent. The absorption by the SOA material slowly increased in the visible and near-UV during storage of SOA in open air in the dark, presumably as a result of condensation reactions that increased the degree of conjugation in the SOA constituents. These observations suggest that photolysis of carbonyl functional groups represents a significant sink for monoterpene SOA compounds in the troposphere, with an estimated lifetime of several hours over the continental United States.  相似文献   

11.
The extended photooxidation of and secondary organic aerosol (SOA) formation from dodecane (C(12)H(26)) under low-NO(x) conditions, such that RO(2) + HO(2) chemistry dominates the fate of the peroxy radicals, is studied in the Caltech Environmental Chamber based on simultaneous gas and particle-phase measurements. A mechanism simulation indicates that greater than 67% of the initial carbon ends up as fourth and higher generation products after 10 h of reaction, and simulated trends for seven species are supported by gas-phase measurements. A characteristic set of hydroperoxide gas-phase products are formed under these low-NO(x) conditions. Production of semivolatile hydroperoxide species within three generations of chemistry is consistent with observed initial aerosol growth. Continued gas-phase oxidation of these semivolatile species produces multifunctional low volatility compounds. This study elucidates the complex evolution of the gas-phase photooxidation chemistry and subsequent SOA formation through a novel approach comparing molecular level information from a chemical ionization mass spectrometer (CIMS) and high m/z ion fragments from an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). Combination of these techniques reveals that particle-phase chemistry leading to peroxyhemiacetal formation is the likely mechanism by which these species are incorporated in the particle phase. The current findings are relevant toward understanding atmospheric SOA formation and aging from the "unresolved complex mixture," comprising, in part, long-chain alkanes.  相似文献   

12.
The photo-stabilising action of three metal chelates in unprocessed and processed polypropylene is examined using normal and second order derivative ultraviolet and infra-red spectroscopic techniques and hydroperoxide analysis. The effects of photolysis with 254 nm light versus photo-sensitised oxidation with 365 nm light are compared. For each exposure condition the rate of carbonyl formation in the polymer is compared with the rate of decomposition of the metal complex. On photolysis, carbonyl growth commences well before the complete destruction of the complexes and none offers protection to the polymer. In fact, all three chelates behave as photo-sensitisers, indicating that stabiliser photolysis products are photo-active. On photo-sensitised oxidation, while the initial hydroperoxide concentration appears to control the onset of carbonyl growth in the polymer, the rate of decomposition of the complexes shows no dependence on hydroperoxide concentration. Solution experiments indicate that there are no dark reactions with hydroperoxides apart from one of the nickel chelates (Cyasorb UV 1084) at high concentrations (~ 10?2m) only. Essentially, the metal chelates operate by scavenging macroalkyl radical species (P·) and not alkoxy (PO·) and hydroxy radicals (·OH) during photo-oxidation. They also inhibit hydroperoxide formation during processing and one of the nickel chelates (UV 1084) gives products during the early stages of photo-oxidation which appear to operate as effective stabilisers.  相似文献   

13.
Capillary electrophoresis-electrospray tandem mass spectrometry (CE-MS/MS) has been used to identify degradation products of the aspartyl tripeptides Phe-Asp-GlyNH(2) and Gly-Asp-PheNH(2) following incubation of the peptides in acidic and alkaline solution. At pH 2, the dominant decomposition products resulted from cleavage of the peptide backbone amide bonds to yield the respective dipeptides and amino acids. In addition, the cyclic aspartyl succinimide intermediate was identified by its [M+H](+) at m/z = 319 and the MS/MS spectrum exhibiting a simple fragmentation pattern with the [C(8)H(10)N](+)-ion as the principal daughter ion (a(1) of Phe-Asp-GlyNH(2)). Deamidation of the C-terminal amide as well as isomerization and enantiomerization of the Asp residue occurred upon incubation at pH 10. alpha-Asp and the isomeric beta-Asp and most of the diastereomeric forms (corresponding to D/L-Asp) could be separated by CE. All isomers could be identified based on their MS/MS spectra. Peptides with the amino acid sequence Phe-Asp-Gly containing the regular alpha-Asp bond displayed a highly intense b(2) fragment ion and a low abundant y(2) ion. In contrast, the y(2) and a(1) fragment were high abundant daughter ions in the mass spectra of beta-Asp peptides while the b(2) ion exhibited a lower abundance. Differences in the MS/MS spectra of the isomers of the peptides with the sequence Gly-Asp-Phe were obvious but less pronounced. In conclusion, CE-MS/MS proved to be a useful tool to study the decomposition and enantiomerization of peptides including the isomerization of Asp residues, due to the combination of efficient separation of isomers by CE and their identification by MS/MS.  相似文献   

14.
The quantitative aspects of some specific decomposition reactions of polyethylene hydroperoxides are re-examined. New data have shown that β-scission of primary alkoxy radicals is negligible in the temperature range of the thermolysis experiments. This is important for the true bimolecular hydroperoxide decomposition for which, in a first approximation, β-scission of primary and secondary alkoxy radicals had been taken into account. The calculation shows that the yields of the main oxidation products such as secondary alcohols, ketones, trans-vinylene groups and aldehydes are not considerably affected by the change. However, the theoretical yields of some minor products such as primary alcohols and of some combination reactions are strongly affected. For the pseudo-monomolecular hydroperoxide decomposition involving a segment of the polymer, the main novelty in comparison with previous work consists in taking into account β-scission of the secondary alkoxy radicals. It allows improving the accuracy of the calculated product yields. Moreover, all the theoretical calculations are on the same level of accuracy and can be used for comparison with the experimental product yields.  相似文献   

15.
Fatty acid amides are a class of compounds with newly discovered biological activity. The ion trap mass spectrometric characteristics of silylated fatty acid amides were examined. Silylation of primary fatty acid amides is required prior to gas chromatography owing to thermal instability of the underivatized compound. The trimethylsilylated amides do not yield a molecular ion under normal electron ionization conditions (70 eV). With methane as a chemical ionization gas, the [M+H]+ ion appears. The [M+H]+ ion also appears when the helium buffer gas pressure is increased in the ion trap. There are three fragments other than the [M+H]+ peak that are predominant in the ion trap mass spectra of these compounds. Two of the fragments have been reported previously, namely the m/z 59 and the [M-71]+ fragments. The fragment of m/z 72 was identified and is the result of a rearrangement. Isotopic labeling was used to confirm fragment identity and the composition of the rearrangement products. Fragmentation patterns were affected by the amide chain length and concentration.  相似文献   

16.
The composition of secondary organic aerosol (SOA) from the gas phase ozonolysis of methylenecyclohexane was analyzed in a series of indoor aerosol chamber experiments. Capillary electrophoresis-electrospray ionization-ion trap mass spectrometry (CE/ESI-ITMS) was used for qualitative and quantitative analysis of SOA constituents. A number of dicarboxylic acids in the range of C(5)-C(6), such as adipic acid and glutaric acid, were found as major components of the organic products. Besides these smaller compounds, the formation of higher-molecular-weight compounds were observed under both neutral and acidic conditions. MS/MS experiments were carried out in order to obtain information on the monomer units and the structure of the dimers. MS(2) experiments of the two most prominent dimers with a mass-to-charge ratio (m/z) of 257 and m/z 273 yielded common fragments of m/z 83, 129 or 145. Based on the fragmentation patterns, these dimers are tentatively identified as carboxylate ester acids containing a unit of adipic acid in the structure. The dimer with m/z 257 was nearly 60% of the total detected compounds for both the neutral and acidic seed particle experiments.  相似文献   

17.
A review article is presented relating to the concept of valence-change in the mass spectra of metal-containing compounds. It is found that the modes of ion dissociation in these spectra are markedly dependent on the oxidation states normally assumed by the metal concerned and it is postulated that electron-transfer may be possible between the complexed metal atom and its ligands in the ion, such that the odd- or even-electron character of the ion is inter-changeable. Ion reactions such as the consecutive loss of two radicals are normally of low probability in the mass spectra of organic compounds, but are often observed in the mass spectra of metal-containing compounds and can be rationalized in terms of the valence-change concept. Convincing evidence for valence-change in some spectra is provided by the occurrence of reactions leading to the bare metal ion, or to the loss of neutral fragments containing the metal atom in a lower oxidation state than in the precursor molecule. Further applications of the concept may be found in the rationalization of the mass spectra of inorganic and organometallic compounds.  相似文献   

18.
The product yields from the reaction between two hydroperoxide groups have been re-calculated. This is a consequence of the fact that β-scission of secondary alkoxy radicals cannot be neglected in the high temperature range of the polyethylene processing experiments (170-200 °C). It must be taken into account in addition to disproportionation/combination and hydrogen abstraction by alkoxy radicals. The increased complexity caused by the additional reaction results mainly from the larger number of caged radical pairs involved in the reactions and also in the calculations. Among other products it becomes possible to calculate the yields of aldehyde and vinyl groups that would not result from hydroperoxide decomposition in the absence of β-scission. The yields of the main oxidation products such as alcohols, ketones and trans-vinylene groups are reduced to some extent in comparison with the values calculated if β-scission is neglected. The vinyl group yield corresponds to slightly more than 10% of the yield of trans-vinylene groups in the temperature range of the experiments. The aldehyde yield is significantly larger than the vinyl group yield and is important in the whole temperature range examined. Main-chain scissions are important at the temperatures of the experiments. They become more important than the sum of the different combination reactions from a temperature of 200 °C on.  相似文献   

19.
Secondary organic aerosol (SOA) is formed when organic molecules react with oxidants in the gas phase to form particulate matter. Recent measurements have shown that more than half of the mass of laboratory-generated SOA consists of high molecular weight oligomeric compounds. In this work, the formation mechanisms of oligomers produced in the laboratory by ozonolysis of α-pinene, an important SOA precursor in ambient air, are studied by MS and MS/MS measurements with high accuracy and resolving power to characterize monomer building blocks and the reactions that couple them together. The distribution of oligomers in an SOA sample is complex, typically yielding over 1000 elemental formulas that can be assigned from an electrospray ionization mass spectrum. Despite this complexity, MS/MS spectra can be found that give strong evidence for specific oligomer formation pathways that have been postulated but not confirmed. These include aldol and gem-diol reactions of carbonyls as well as peroxyhemiacetal formation from hydroperoxides. The strongest evidence for carbonyl reactions is in the formation of hydrated products. Less compelling evidence is found for dehydrated products and secondary ozonide formation. The number of times that a monomer building block is observed as a fragmentation product in the MS/MS spectra is shown to be independent of the monomer vapor pressure, suggesting that oligomer formation is not driven by equilibrium partitioning of a monomer between the gas and particle phases, but rather by reactive uptake where a monomer collides with the particle surface and rapidly forms an oligomer.  相似文献   

20.
Product distributions from the 254‐nm photooxidation of the three iodopentane isomers were explored as a technique for studying the self‐reactions of individual pentyl peroxyl radicals (in air at ambient temperature and pressure). Pentanols and the associated carbonyl compounds (pentanal or pentanones) were major products as expected. Other major products resulted from the isomerization of pentan‐1‐oxyl and pentan‐2‐oxyl radicals, but their nature could not be identified. Minor products were alcohols and carbonyl compounds arising from the decomposition of pentoxyl radicals. Diols and mixed hydroxycarbonyl compounds from cross‐combination reactions were essentially absent, in contrast to expectation. The observed product distributions were evaluated to derive branching ratios for the radical‐preserving pathways of the self‐reactions, 0.42 ±0.17, 0.46 ± 0.10, 0.39 ± 0.08, for pentan‐1‐yl peroxyl, pentan‐2‐yl peroxyl, and pentan‐3‐yl peroxyl, respectively. Rate coefficients derived for the decomposition of the corresponding pentoxyl radicals, relative to their reaction with oxygen, are (5.1 ± 0.5) × 1018, (1.0 ± 0.2) × 1018, and (3.2 ± 0.3) × 1018 molecule cm?3, respectively. Rate constants for the isomerization of pentan‐1‐oxyl and pentan‐2‐oxyl were estimated from the contributions of isomerization products to the total amounts of products as (4.0 ± 1.1) × 105 s?1 and (1.0 ± 2.0) × 105 s?1, respectively. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 34: 126–138, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号