首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A theoretical study of the electron dynamics in image potential states on Cu(1 0 0) surfaces with different types of adsorbates is presented. Scattering of the image state electron by an adsorbate induces inter-band and intra-band transitions leading respectively to the population decay and to the dephasing of the image state. We compare results obtained with low coverage (typically 1 adsorbate atom per 1000 surface atoms) Cs, Ar, and a model electronegative adsorbates. As follows from our results, Cs adsorbates lead to both appreciable dephasing and decay, while electronegative adsorbates mostly affect the dephasing rate. The effect of low coverage Ar adsorbates is small, consistent with their neutrality.  相似文献   

2.
A possible relationship between population of the surface electronic state and chemical reactivity for Cu layers on Ru(0 0 0 1) is revealed by tunneling spectroscopy and microscopy. The surface state shifts down in energy with increasing thickness. Ab initio calculations indicate that the energy shift can be assigned to the decreasing tensile strain of the deposited film. The reactivity of the surface towards oxygen correlates with the population of this state, reaching a maximum at Cu thicknesses where the surface state is empty. These data provides an indication of the effect of strain on the reactivity of metal surfaces.  相似文献   

3.
The electronic structure and the electron dynamics of the clean InAs(1 1 1)A 2 × 2 and the InAs(1 1 1)B 1 × 1 surfaces have been studied by laser pump-and-probe photoemission spectroscopy. Normally unpopulated electron states above the valence band maximum (VBM) are filled on the InAs(1 1 1)A surface due to the conduction band pinning above the Fermi level (EF). Accompanied by the downward band banding alignment, a charge accumulation layer is confined to the surface region creating a two dimensional electron gas (2DEG). The decay of the photoexcited carriers above the conduction band minimum (CBM) is originated by bulk states affected by the presence of the surface. No occupied states were found on the InAs(1 1 1)B 1 × 1 surface. This fact is suggested to be due to the surface stabilisation by the charge removal from the surface into the bulk. The weak photoemission intensity above the VBM on the (1 1 1)B surface is attributed to electron states trapped by surface defects. The fast decay of the photoexcited electron states on the (1 1 1)A and the (1 1 1)B surfaces was found to be τ1 1 1 A ? 5 ps and τ1 1 1 B ?  4 ps, respectively. We suggest the diffusion of the hot electrons into the bulk is the decay mechanism.  相似文献   

4.
5.
6.
A theoretical study of the electron dynamics in image potential states on Cu(1 0 0) surfaces with different types of defects (Cu adatoms and Cu vacancies) is presented for low defect density at the surface. A wave packet propagation approach is employed for the electron scattering calculations, where the defect induced potentials are obtained from an ab initio density functional study. Scattering of the image state electron by a defect induces inter-band and intra-band transitions leading, respectively, to the population decay and to the dephasing of the image states. Comparison of the respective effects of adatoms and vacancies shows that Cu adatoms are much more efficient in inducing population decay and dephasing of the image potential states. Present results for the case of Cu adatoms are compared with available time-resolved two-photon photoemission data.  相似文献   

7.
The adsorption of atomic S on the Fe(1 1 0) surface is examined using density functional theory (DFT). Three different adsorption sites are considered, including the atop, hollow and bridge sites and the S is adsorbed at a quarter monolayer coverage in a p(2 × 2) arrangement. The hollow site is found to be the most stable, followed by the bridge and atop sites. At all three sites, S adsorption results in relatively minor surface reconstruction, with the most significant being that for the hollow site, with lateral displacements of 0.09 Å. Comparisons between S-adsorbed and pure Fe surfaces revealed reductions in the magnetic moments of surface-layer Fe atoms in the vicinity of the S. At the hollow site, the presence of S causes an increase in the surface Fe d-orbital density of states between 4 and 5 eV. However, S adsorption has no significant effect on the structure and magnetic properties of the lower substrate layers.  相似文献   

8.
Femtosecond dynamics of excess electrons photo-injected into amorphous and crystalline D2O layers on Ru(0 0 1) have been investigated by time-resolved two-photon photoelectron spectroscopy. In the crystalline case, excited electrons are transferred into delocalized states considered as image potential states in the conduction band of ice and relax back to the metal on an ultrafast time scale. The life time of the n = 1 image potential state is <5 fs. In the amorphous case, spectral features arise from delocalized and localized electronic states. Relaxation of delocalized electrons back to the metal is as fast as in the crystalline case. The binding energy of localized electrons, however, is found to increase as a function of time delay by 1 eV/ps, which is attributed to the formation of solvated electrons. Such energetic stabilization starting at the bottom of the conduction band is clearly absent in crystalline layers. This pronounced correlation of electronic structure and electron dynamics with molecular structure is associated with the presence of localized states near the bottom of the conduction band in amorphous ice. Such localized states are absent for perfect periodic crystalline structures but prevail in amorphous systems where they serve as precursor sites for electron solvation.  相似文献   

9.
Inelastic helium atom scattering from sodium atoms on the Cu(0 0 1) surface at 50 K reveals a remarkable 15% increase in the frequency of the frustrated translational vibrations (T-mode) from ?ω=5.56 to 6.34 meV with increasing coverage from ΘNa=0.008 to 0.125. The coverage dependence and the negligible dispersion of the frequency cannot be explained by the direct dipole-dipole coupling but are well-understood in terms of the Lau-Kohn effective long-range interaction via intrinsic surfaces states.  相似文献   

10.
Adsorption of alkali atoms on the (1 1 1) and (1 0 0) noble metal surfaces has been shown recently to induce long-lived resonances located inside the surface projected band gap. However, the width of these resonances, as it appears in two-photon photo-emission experiments, is much larger than the inverse of their lifetime. We report on a theoretical study of some broadening mechanisms of these resonance lines in the Na/Cu(1 1 1) and Cs/Cu(1 1 1) systems at low coverage, including the homogeneous natural line broadening and the inhomogeneous statistical broadenings due to the distribution of adsorption heights associated to the quantal vibration of the alkali adsorbate and to the lateral disorder of alkali adsorption on the surface. The inhomogeneous mechanisms are shown to induce a very large broadening of the resonance line, in quantitative agreement with experimental results. The most important broadening effect appears to be the effect of the distribution of alkali adsorption heights.  相似文献   

11.
Surface states are a unique and important class of quantum states that shave an important effect on the electronic properties of Cu(1 1 0) surface. The Cu(1 1 0) surface has been studied using ultraviolet photoemission spectroscopy (PES), inverse photoemission spectroscopy (IPES), and reflection anisotropy spectroscopy (RAS), and shows a resonance in the RAS spectra at 2.1 eV due to a transition between occupied and unoccupied surface states. The unoccupied surface state involved in the RAS transition at an energy of 1.7 eV at the point of the surface Brillouin zone has been investigated using IPES and the occupied surface state is seen in PES spectra at 0.45 eV below the Fermi level. The energy difference of the surface states, 2.15 eV, is a good match to the transition energy found in the RAS experiments.  相似文献   

12.
Adsorption of thiophene on the (1 0 0) surfaces of Ni, Cu, and Pd has been investigated by the ab initio density functional theory method (periodic DMol3). Several parallel and perpendicular adsorption geometries are examined in detail. For Ni(1 0 0), both dissociative and molecular adsorption structures are found with small difference in energy. Thiophene adsorbs only molecularly on Cu(1 0 0) and Pd(1 0 0). The most stable molecular adsorption structures on all the surfaces are quite similar, where thiophene adsorbs on top of a 4-fold hollow with the symmetry axis rotated 45° from the metal rows. These stable structures arise from a good matching of the thiophene molecule to the metal surfaces. The calculated adsorption geometries are in reasonable agreement with XAFS experiments.  相似文献   

13.
M. Pratzer  H. J. Elmers   《Surface science》2004,550(1-3):223-232
The structure and electronic properties of ultrathin Co films on W(1 1 0) grown by molecular beam epitaxy in UHV were investigated by low energy electron diffraction (LEED) and scanning tunneling microscopy and spectroscopy (STM and STS). For coverages above 0.7 ML the pseudomorphic (ps) monolayer is transformed gradually into close-packed (cp-) monolayer areas, showing up as separated islands that increase in size with coverage until the cp-monolayer is complete. Two different structures of the cp-monolayer were observed by atomically resolved STM, both leading to a 8 × 1 superstructure in the LEED pattern. Higher coverages continue to grow in the Stransky–Krastanov growth mode forming simultaneously double layer islands and triple layer islands in fcc(1 1 1) and hcp(0 0 0 1) stacking. STS reveals tunneling spectra that differ considerably depending on the thickness and on the structure. Two different classes of triple layer islands can be distinguished by a resonant peak at +0.3 eV appearing in only one of the two classes. We attributed this behavior to a different stacking according to a fcc or hcp structure.  相似文献   

14.
The structure and the electronic valence state occupation of ultrathin K, Rb, and Cs films grown on a GaAs(1 0 0)-(4×2) surface have been studied by means of metastable He atom scattering (MHAS), He atom scattering (HAS), and low-energy electron diffraction (LEED) at temperatures ranging from 150 to 400 K. From the survival probability of the scattered He* atoms, detailed information on the coverage-dependent filling of the alkali metal valence states and their emptying upon subsequent exposure to oxygen were derived. These data reveal for K and Rb a nearly linear band filling with increasing coverage starting at about 0.5 ML whereas a more rapid filling is observed for Cs which is almost completed at about 0.7 ML. Subsequent oxygen adsorption causes a demetallization of the metallic alkali metal monolayers. In case of Cs, a distinct minimum of the He* signal appears at an oxygen exposure of about 0.8 L, presumably indicating the onset of subsurface oxidation.  相似文献   

15.
Quantitative low energy electron diffraction has been used to determine the structure of the Ni(1 1 1)(√3×√3)R30°-Sn surface phase. The results confirm that the surface layer comprises a substitutional alloy of composition Ni2Sn as previously found by low energy ion scattering (LEIS), and also shows that there is no stacking fault at the substrate/alloy interface as has been found in (√3×√3)R30°-Sb surface alloys on Ag and Cu(1 1 1). The surface alloy layer is rumpled with the Sn atoms 0.45 ± 0.03 Å higher above the substrate than the surrounding Ni atoms. This rumpling amplitude is almost identical to that previously reported on the basis of the LEIS study. Comparison with similar results for Sn-induced surface alloy phases on Ni(1 0 0) and Ni(1 1 0) shows a clear trend to reduced rumpling with reduced surface atomic layer density, an effect which can be rationalised in terms of the different effects of valence electron charge smoothing at the surface.  相似文献   

16.
We present a combined experimental (angle resolved photoemission: ARUPS) and theoretical study of the Shockley-type surface state in the L-gap of the (1 1 1)-face of Au covered with one monolayer of Ar. As known also from other systems consisting of rare-gas monolayers on noble metal (1 1 1) surfaces, the adsorbed rare-gas shifts the Shockley-state towards the Fermi level and increases the spin-orbit splitting, whereas the effective band mass remains unchanged. We analyze the observed changes by a comparison with ab initio slab-layer calculations based on the density functional theory (DFT), both within the local density approximation (LDA) and the generalized gradient approximation (GGA). Although the attractive van der Waals interaction between rare-gas and substrate is not properly considered in DFT there are considerable hybridization effects which allow to describe such weakly bound adsorbates quantitatively. We show to what extent the various DFT calculations correspond to the experimental results. Furthermore, we discuss the importance of lattice relaxation and the exact absorption position into the calculations.  相似文献   

17.
The atomic displacements of Cu atoms induced by nitrogen adsorption on Cu(1 0 0) have been studied by channelling–blocking of swift 4He ions. This study has been performed at two adsorption stages. The first one corresponds to the formation of a dense, two-dimensional, self-ordered array of square-shaped islands covered by nitrogen. The second one corresponds to uniform coverage at saturation. We have determined by nuclear reaction analysis the absolute quantity of nitrogen adsorbed at these two stages. The values obtained, when confronted to previous observations of these stages by low energy electron diffraction and by scanning tunnelling microscopy, demonstrate that nitrogen remains mostly at the sample surface and that the N concentration in bulk Cu could not exceed 1%. However, channelling measurements show that this surface adsorption generates atomic displacements of Cu atoms down to depths of a few ten (1 0 0) interplanar distances. In the mean time, blocking measurements reveal that nitrogen adsorption induces a strong surface expansion: the interplanar distance between the first two (1 0 0) planes increases of about 0.2 Å, in contrast with the weak contraction observed on bare Cu(1 0 0) surfaces. This observation supports the hypothesis that, when nitrogen is adsorbed, the surface is submitted to stress variations, from tensile to compressive stress for, respectively, bare and nitrogen-covered surface regions. The surface forces corresponding to such variations have been introduced in molecular dynamics simulations. For coverage leading to self-ordering, these simulations do indeed predict displacements of subsurface Cu atoms. The adjustment of these displacements to those measured by channelling gives the amplitude of the stress variation.  相似文献   

18.
We report on a theoretical study of the escape of confined surface states electrons from quantum corrals made of Cu adatoms on a Cu(1 1 1) surface. This study maps electron transmission through the corral wall and provides an extension of our earlier work focused on confinement in Cu corrals [S. Díaz-Tendero, F.E. Olsson, A.G. Borisov, J.P. Gauyacq, Phys. Rev. B 77 (2008) 205403]. The existence of two decay modes for the confined surface state is stressed: (i) non-resonant tunnelling through the corral wall concentrated on the Cu adatoms and (ii) a resonant-induced decay involving the transient formation of a resonant state localized on top of the corral wall. The present mapping of the electron transmission reveals how the interference between the two decay modes works: there exist regions where the electron leaves the corral, balanced by regions where it enters the corral, though the global behaviour of the quasi-stationary states is electron escape from the corral.  相似文献   

19.
Wenzhen Lai  Daiqian Xie   《Surface science》2004,550(1-3):15-20
Vibrational properties of hydrogen on the Rh(1 1 1) surface have been investigated theoretically. The potential energy surface for this system has been calculated within the density functional theory. The potential is found to be very anharmonic. The wave functions and their energies for the hydrogen motion on the potential energy surface (PES) have been calculated and assigned by using discrete variable representation. It was found that the vibrational wave function is localized at hollow site in the ground state for hydrogen on Rh(1 1 1). Higher excited states are of delocalized nature and mixed parallel and perpendicular character. Our results are in good agreement with the observed vibrational spectra of hydrogen on the Rh(1 1 1) surface.  相似文献   

20.
We predict ultraslow collapse of “tubular image states” (TIS) on material surfaces. TIS are bound Rydberg-like electronic states formed at large distances (∼30 nm) from the surfaces of suspended circularly-symmetric nanowires, such as metallic C nanotubes. The states are formed in potential wells, resulting from a combination of the TIS-electron attraction to image charges in the nanotube and its centrifugal repulsion, caused by spinning around the tube. We demonstrate that TIS can collapse on the tube surface by passing their angular momentum l to circularly polarized flexural phonons excited in the tube. Our analysis shows that for highly detached TIS with l ? 6 the relaxation lifetimes are of the order of 10 ns-1 μs, while for l < 6 these lifetimes are reduced by several orders of magnitude.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号